
Lena Documentation
Выпуск 0.1

Yaroslav Nikitenko

мая 09, 2020

Содержание:

1 Пособие 3
1.1 Введение в Lena . 3
1.2 Split . 11
1.3 Ответы на упражнения . 23

2 Reference 29
2.1 Context . 29
2.2 Core . 34
2.3 Flow . 40
2.4 Math . 48
2.5 Output . 55
2.6 Structures . 58
2.7 Variables . 64

3 Indices and tables 69

4 Установка 71
4.1 Минимальная . 71
4.2 Рекомендуемая . 71
4.3 Полная . 71
4.4 GitHub или PyPI . 72

5 Документация 73

6 Лицензия 75

7 Альтернативы 77

Содержание модулей Python 79

Алфавитный указатель 81

i

ii

Lena Documentation, Выпуск 0.1

Lena - архитектурный фреймворк для анализа данных. Она написана на популярном языке програм-
мирования Python (Питон) и работает с версиями Python 2, 3 и PyPy (2 и 3).

Свойства и преимущества Lena с точки зрения программирования включают:

• мощный и простой язык программирования.

• модульность, слабое зацепление (loose coupling). Алгоритмы могут быть легко добавлены, заме-
нены или повторно использованы.

• повторное использование кода. Разделение логики и презентации. Один шаблон может быть ис-
пользован для нескольких графиков.

• быстрая разработка. Могут быть запущены только те элементы, которые уже работают. Во время
разработки можно анализировать только малую часть данных (чтобы проверить работу програм-
мы). Результаты сложных вычислений можно легко сохранить.

• производительность (в плане использования памяти и скорости). Несколько видов анализа могут
быть сделаны за одно чтение данных. Может использоваться PyPy с компиляцией «на лету».

• понятный, структурированный и красивый код.

С точки зрения анализа данных:

• сравнение результатов анализа при произвольных изменениях (в том числе для разных входных
данных или алгоритмов).

• переиспользование алгоритма для подмножества данных (например, чтобы увидеть, как алгоритм
работает для разных позиций в детекторе).

• согласованность анализа. Когда мы запускаем несколько алгоритмов для одного набора данных
или переиспользуем алгоритм, то мы уверены, что используем те же данные и тот же алгоритм.

• алгоритмы могут быть скомбинированы для более сложного анализа.

Lena была создана при анализе данных в экспериментальной физике нейтрино и названа в честь ве-
ликой сибирской реки.

Содержание: 1

Lena Documentation, Выпуск 0.1

2 Содержание:

Глава 1

Пособие

1.1 Введение в Lena

In our data analysis we often face changing data or algorithms. For example, we may want to see how our
analysis works for another dataset or for a specific subset of the data. We may also want to use different
algorithms and compare their results.

To handle this gracefully, we must be able to easily change or extend our code at any specified point. The
idea of Lena is to split our code into small independent blocks, which are later composed together. The
tutorial will show us how to do that and what implications this idea will have for our code.

Contents

• The three ideas behind Lena

– 1. Sequences and elements

– 2. Lazy evaluation

– 3. Context

• A real analysis example

• Elements for development

1.1.1 The three ideas behind Lena

1. Sequences and elements

The basic idea of Lena is to join our computations into sequences. Sequences consist of elements.

The simplest Lena program may be the following. We use a sequence with one element, an anonymous
function, which is created in Python by lambda keyword:

3

Lena Documentation, Выпуск 0.1

>>> from __future__ import print_function
>>> from lena.core import Sequence
>>> s = Sequence(
... lambda i: pow(-1, i) * (2 * i + 1),
...)
>>> results = s.run([0, 1, 2, 3])
>>> for res in results:
... print(res)
1 -3 5 -7

Lena supports both Python versions, 2 and 3. It is simple to do it in your code, if you want. The first line
allows to use print() for any version of Python. The next line imports a Lena class.

A Sequence can be initialized from several elements. To make the Sequence do the actual work, we use its
method run. Run’s argument is an iterable (in this case a list of four numbers).

To obtain all results, we iterate them in the cycle for.

Let us move to a more complex example. It is often convenient not to pass any data to a function, which
gets it somewhere else itself. In this case use a sequence Source:

from lena.core import Sequence, Source
from lena.flow import CountFrom, ISlice

s = Sequence(
lambda i: pow(-1, i) * (2 * i + 1),

)
spi = Source(

CountFrom(0),
s,
ISlice(10**6),
lambda x: 4./x,
Sum(),

)
results = list(spi())
[3.1415916535897743]

The first element in Source must have a __call__ special method, which accepts no arguments and generates
values itself. These values are propagated by the sequence: each following element receives as input the results
of the previous element, and the sequence call gives the results of the last element.

A CountFrom is an element, which produces an infinite series of numbers. Elements must be functions or
objects, but not classes1. We pass the starting number to CountFrom during its initialization (in this case
zero). The initialization arguments of CountFrom are start (by default zero) and step (by default one).

The following elements of a Source (if present) must be callables or objects with a method called run. They
can form a simple Sequence themselves.

Sequences can be joined together. In our example, we use our previously defined sequence s as the second
element of Source. There would be no difference if we used the lambda from s instead of s.

A Sequence can be placed before, after or inside another Sequence. A Sequence can’t be placed before a
Source, because it doesn’t accept any incoming flow.

Примечание: If we try to instantiate a Sequence with a Source in the middle, the initialization will
instantly fail and throw a LenaTypeError (a subtype of Python’s TypeError).

1 This possibility may be added in the future.

4 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

All Lena exceptions are subclassed from LenaException. They are raised as early as possible (not after a
long analysis was fulfilled and discarded).

Since we can’t use an infinite series in practice, we must stop it at some point. We take the first million
of its items using an ISlice element. ISlice and CountFrom are similar to islice and count functions from
Python’s standard library module itertools. ISlice can also be initialized with start, stop[, step] arguments,
which allow to skip some initial or final subset of data (defined by its index), or take each step-th item (if
the step is two, use all even indices from zero).

We apply a further transformation of data with a lambda, and sum the resulting values.

Finally, we materialize the results in a list, and obtain a rough approximation of pi.

2. Lazy evaluation

Let us look at the last element of the previous sequence. Its class has a method run, which accepts the
incoming flow :

class Sum():
def run(self, flow):

s = 0
for val in flow:

s += val
yield s

Note that we give the final number not with return, but with yield. Yield is a Python keyword, which turns
a usual function into a generator.

Generators are Python’s implementation of lazy evaluation. In the very first example we used a line

>>> results = s.run([0, 1, 2, 3])

The method run of a Sequence is a generator. When we call a generator, we obtain the result, but no
computation really occurs, no statement from the generator’s code is executed. To actually calculate the
results, the generator must be materialized. This can be done in a container (like a list or tuple) or in a
cycle:

>>> for res in results:
... print(res)

Lazy evaluation is good for:

• performance. Reading data files may be one of the longest steps in simple data analysis. Since lazy
evaluation uses only one value at a time, this value can be used immediately without waiting when
the reading of the whole data set is finished. This allows us to make a complete analysis in almost the
same time as just to read the input data.

• low memory impact. Data is immediately used and not stored anywhere. This allows us to analyse
data sets larger than the physical memory, and thus makes our program scalable.

Lazy evaluation is very easy to implement in Python using a yield keyword. Generators must be carefully
distinguished from ordinary functions in Lena. If an object inside a sequence has a run method, it is assumed
to be a generator. Otherwise, if the object is callable, it is assumed to be a function, which makes some simple
transformation of the input value.

Generators can yield zero or multiple values. Use them to alter or reduce data flow. Use functions or callable
objects for calculations that accept and return a single value.

1.1. Введение в Lena 5

Lena Documentation, Выпуск 0.1

3. Context

Lena’s goal is to cover the data analysis process from beginning to end. The final results of an analysis are
tables and plots, which can be used by people.

Lena doesn’t draw anything itself, but relies on other programs. It uses a library Jinja to render text
templates. There are no predefined templates or magic constants in Lena, and users have to write their own
ones. An example for a one-dimensional LaTeX plot is:

% histogram_1d.tex
\documentclass{standalone}
\usepackage{tikz}
\usepackage{pgfplots}
\pgfplotsset{compat=1.15}

\begin{document}
\begin{tikzpicture}
\begin{axis}[]
\addplot [

const plot,
]
table [col sep=comma, header=false] {\VAR{ output.filepath }};
\end{axis}
\end{tikzpicture}
\end{document}

This is a simple TikZ template except for one line: \VAR{ output.filepath }. \VAR{ var } is substituted
with the actual value of var during rendering. This allows to use one template for different data, instead of
creating many identical files for each plot. In that example, variable output.filepath is passed in a rendering
context.

A more sophisticated example could be the following:

\BLOCK{ set var = variable if variable else '' }
\begin{tikzpicture}
\begin{axis}[

\BLOCK{ if var.latex_name }
xlabel = { $\VAR{ var.latex_name }$
\BLOCK{ if var.unit }

[$\mathrm{\VAR{ var.unit }}$]
\BLOCK{ endif }
},

\BLOCK{ endif }
]
...

If there is a variable in context, it is named var for brevity. If it has a latex_name and unit, then these values
will be used to label the x axis. For example, it could become x [m] or E [keV] on the plot. If no name or
unit were provided, the plot will be rendered without a label, but also without an error or a crash.

Jinja allows very rich programming possibilities. Templates can set variables, use conditional operators and
cycles. Refer to Jinja documentation2 for details.

To use Jinja with LaTeX, Lena slightly changed its default syntax3: blocks and variables are enclosed in
\BLOCK and \VAR environments respectively.

2 Jinja documentation: https://jinja.palletsprojects.com/
3 To use Jinja to render LaTeX was proposed here and here, template syntax was taken from the original article.

6 Глава 1. Пособие

https://jinja.palletsprojects.com/
http://eosrei.net/articles/2015/11/latex-templates-python-and-jinja2-generate-pdfs
https://web.archive.org/web/20121024021221/http://e6h.de/post/11/

Lena Documentation, Выпуск 0.1

A context is a simple Python dictionary or its subclass. Flow in Lena consists of tuples of (data, context)
pairs. It is usually not called dataflow, because it also has context. As it was shown earlier, context is
not necessary for Lena sequences. However, it greatly simplifies plot creation and provides complementary
information with the main data. To add context to the flow, simply pass it with data as in the following
example:

class ReadData():
"""Read data from CSV files."""

def run(self, flow):
"""Read filenames from flow and yield vectors.

If vector component could not be cast to float,
ValueError is raised.
"""
for filename in flow:

with open(filename, "r") as fil:
for line in fil:

vec = [float(coord)
for coord in line.split(',')]

(data, context) pair
yield (vec, {"data": {"filename": filename}})

We read names of files from the incoming flow and yield coordinate vectors. We add file names to a nested
dictionary «data» (or whatever we call it). Filename could be referred in the template as data[«filename»]
or simply data.filename.

Template rendering is widely used in a well developed area of web programming, and there is little difference
between rendering an HTML page or a LaTeX file, or any other text file. Even though templates are powerful,
good design suggests using their full powers only when necessary. The primary task of templates is to produce
plots, while any nontrivial calculations should be contained in data itself (and provided through a context).

Context allows separation of data and presentation in Lena. This is considered a good programming practice,
because it makes parts of a program focus on their primary tasks and avoids code repetition.

Since all data flow is passed inside sequences of the framework, context is also essential if one needs to pass
some additional data to the following elements. Different elements update the context from flow with their
own context, which persists unless it is deleted or changed.

1.1.2 A real analysis example

Now we are ready to do some real data processing. Let us read data from a file and make a histogram of x
coordinates.

Примечание: The complete example with other files for this tutorial can be found in
docs/examples/tutorial directory of the framework’s tree or online.

Список 1: main.py

from __future__ import print_function

import os

from lena.core import Sequence, Source
from lena.math import mesh

(continues on next page)

1.1. Введение в Lena 7

https://github.com/ynikitenko/lena/tree/master/docs/examples/tutorial

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

from lena.output import ToCSV, Writer, LaTeXToPDF, PDFToPNG
from lena.output import MakeFilename, RenderLaTeX
from lena.structures import Histogram

from read_data import ReadData

def main():
data_file = os.path.join("..", "data", "normal_3d.csv")
s = Sequence(

ReadData(),
lambda dt: (dt[0][0], dt[1]),
Histogram(mesh((-10, 10), 10)),
ToCSV(),
MakeFilename("x"),
Writer("output"),
RenderLaTeX("histogram_1d.tex"),
Writer("output"),
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
print(list(results))

if __name__ == "__main__":
main()

If we run the script, the resulting plots and intermediate files will be written to the directory output/, and
the terminal output will be similar to this:

$ python main.py
pdflatex -halt-on-error -interaction batchmode -output-directory output output/x.tex
pdftoppm output/x.pdf output/x -png -singlefile
[(„output/x.png“, {„output“: {„filetype“: „png“}, „data“: {„filename“: „../data/normal_3d.csv“}, „histogram“:
{„ranges“: [(-10, 10)], „dim“: 1, „nbins“: [10]}})]

During the run, the element LaTeXToPDF called pdflatex, and PDFToPNG called pdftoppm program. The
commands are printed with all arguments, so that if there was an error during LaTeX rendering, you can
run this command manually until the rendered file output/x.tex is fixed (and then fix the template).

The last line of the output is the data and context, which are the results of the sequence run. The elements
which produce files usually yield (file path, context) pairs. In this case there is one resulting value, which has
a string output/x.png as its data part.

Let us return to the script to see the sequence in more details. The sequence s runs one data file (the list
could easily contain more). Since our ReadData produces a (data, context) pair, the following lambda leaves
the context part unchanged, and gets the zeroth index of each incoming vector (which is the zeroth part of
the (data, context) pair).

This lambda is not very readable, and we’ll see a better and more general approach in the next part of the
tutorial. But it shows how the flow can be intercepted and transformed at any point within a sequence.

The resulting x components fill a Histogram, which is initialized with edges defined a mesh from -10 to 10
with 10 bins.

8 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

This histogram, after it has been fed with the complete flow, is transformed to a CSV (comma separated
values) text. In order for external programs (like pdflatex) to use the resulting table, it must be written to
a file.

MakeFilename adds file name to context[«output»] dictionary. context.output.filename is the file name
without path and extension (the latter will be set by other elements depending on the format of data:
first it is a csv table, then it may become a pdf plot, etc.) Since there is only one file expected, we can simply
call it x.

Writer element writes text data to the file system. It is initialized with the name of the output directory. To
be written, the context of a value must have an “output” subdictionary.

After we have produced the csv table, we can render our LaTeX template histogram_1d.tex with that table
and context, and convert the plot to pdf and png. As earlier, RenderLaTeX produces text, which must be
written to the file system before used.

Congratulations: now you can do a complete analysis using the framework, from the beginning to the final
plots. In the end of this part of the tutorial we’ll show several Lena elements which may be useful during
development.

1.1.3 Elements for development

Let us use the structure of the previous analysis and add some more elements to the sequence:

from lena.context import Context
from lena.flow import Cache, End, Print

s = Sequence(
Print(),
ReadData(),
Print(),
ISlice(1000),
lambda val: val[0][0], # data.x
Histogram(mesh((-10, 10), 10)),
Context(),
Cache("x_hist.pkl"),
End(),
ToCSV(),
...

)

Print outputs values, which pass through it in the flow. If we suspect an error or want to see exactly what
is happening at a given point, we can put any number of Print elements anywhere we want. We don’t need
to search for other files and add print statements there to see the input and output values.

ISlice, which we met earlier when approximating pi, limits the flow to the specified number of items. If we
are not sure that our analysis is already correct, we can select only a small amount of data to test that.

Context is an element, which is a subclass of dictionary, and it can be used as a context when a formatted
output is needed. If a Context object is inside a sequence, it transforms the context part of the flow to
its class, which is indented during output (not in one line, as a usual dict). This may help during manual
analysis of many nested contexts.

Cache stores the incoming flow or loads it from file. Its initialization argument is the file name to store the
flow. If the file is missing, then Cache creates that, runs the previous elements, and stores values from the
flow into the file. On subsequent runs it loads the flow from file, and no previous elements are run. Cache
uses pickle, which allows serialization and deserialization of most Python objects (except function’s code). If
you have some lengthy calculation and want to save the results (for example, to improve plots, which follow

1.1. Введение в Lena 9

Lena Documentation, Выпуск 0.1

in the sequence), you can use Cache. If you changed the algorithm before Cache, simply delete the file to
refill that with the new flow.

End runs all previous elements and stops analysis here. If we enabled that in this example, Cache would be
filled or read (as without the End element), but nothing would be passed to ToCSV and further. One can
use End if they know for sure, that the following analysis is incomplete and will fail.

Summary

Lena encourages to split analysis into small independent elements, which are joined into sequences. This
allows to substitute, add or remove any element or transform the flow at any place, which may be very
useful for development. Sequences can be elements of other sequences, which allows their reuse.

Elements can be callables or generators. Simple callables can be easily added to transform each value from
the flow, while generators can transform the flow, adding more values or reducing that. Generators allow
lazy evaluation, which benefits memory impact and generalizes algorithms to use potentially many values
instead of one.

Complete information about the analysis is provided through the context. It is the user’s responsibility to
add the needed context and to write templates for plots. The user must also provide some initial context for
naming files and plots, but apart from that the framework transfers and updates context itself.

We introduced two basic sequences. A Sequence can be placed before, after or inside another Sequence. A
Source is similar to a Sequence, but no other sequence can precede that.

Таблица 1: Sequences
Sequence Initialization Usage
Sequence Elements with a __call__(value) or run(flow) method (or callables) s.run(flow)
Source The first element has a __call__() method (or is callable), others form

a Sequence
s()

In this part of the tutorial we have learnt how to make a simple analysis of data read from a file and how to
produce several plots using only one template. In the next part we’ll learn about new types of elements and
sequences and how to make several analyses reading a data file only once.

Exercises

1. Ivan wants to become more familiar with generators and implements an element End. He writes this
class:

class End(object):
"""Stop sequence here."""

def run(self, flow):
"""Exhaust all preceding flow and stop iteration."""
for val in flow:

pass
raise StopIteration()

and adds this element to main.py example above. When he runs the program, he gets

Traceback (most recent call last):

10 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

File «main.py», line 46, in <module>
main()

File «main.py», line 42, in main
results = s.run([data_file])

File «lena/core/sequence.py», line 70, in run
flow = elem.run(flow)

File «main.py», line 24, in run
raise StopIteration()

StopIteration

It seems that no further elements were executed, indeed. However, Ivan recalls that StopIteration inside
a generator should lead to a normal exit and should not be an error. What was done wrong?

2. Svetlana wants to make sure that no statement is really executed during a generator call. Write a
simple generator to check that.

3. Count counts values passing through that. In order for that not to change the data flow, it should
add results to the context. What other design decisions should be considered? Write its simple
implementation and check that it works as a sequence element.

4. Lev doesn’t like how the output in previous examples is organised.

«In our object-oriented days, I could use only one object to make the whole analysis», - he says.
«Histogram to CSV, Write, Render, Write again,. . . : if our output system remains the same, and we
need to repeat that in every script, this is a code bloat».

How to make only one element for the whole output process? What are advantages and disadvantages
of these two approaches?

5. ** Remember the implementation of Sum earlier. Suppose you need to split one flow into two to make
two analyses, so that you don’t have to read the flow several times or store it completely in memory.

Will this Sum allow that, why? How should it be changed? These questions will be answered in the
following part of the tutorial.

The answers to the excercises are given in the end of the tutorial.

1.2 Split

In this part of the tutorial we’ll learn how to make several analyses reading input data only once and without
storing that in memory.

Contents

• Introduction

• Variables

– Combine

– Compose

• Analysis example

1.2. Split 11

Lena Documentation, Выпуск 0.1

• Adapters, elements and sequences

• Split

• Context. Performance and safety

1.2.1 Introduction

If we want to process same data flow «simultaneously» by sequence1 and sequence2, we use the element
Split :

from lena.core import Split

s = Sequence(
ReadData(),
Split([

sequence1,
sequence2,
...

]),
ToCSV(),
...

)

The first argument of Split is a list of sequences, which are applied to the incoming flow «in parallel» (not
in the sense of processes or threads).

However, not every sequence can be used in parallel with others. Recall the example of an element Sum from
the first part of the tutorial:

class Sum1():
def run(self, flow):

s = 0
for val in flow:

s += val
yield s

The problem is that if we pass it a flow, it will consume it completely. After we call Sum1().run(flow), there
is no way to stop iteration in the inner cycle and resume that later. To reiterate the flow in another sequence
we would have to store that in memory or reread all data once again.

To run analyses in parallel, we need another type of element. Here is Sum refactored:

class Sum():
def __init__(self):

self._sum = 0

def fill(self, val):
self._sum += val

def compute(self):
yield self._sum

This Sum has methods fill(value) and compute(). Fill is called by some external code (for example, by Split).
After there is nothing more to fill, the results can be generated by compute. The method name fill makes its
class similar to a histogram. Compute in this example is trivial, but it may include some larger computations.

12 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

We call an element with methods fill and compute a FillCompute element. An element with a run method
can be called a Run element.

A FillCompute element can be generalized. We can place before that simple functions, which will transform
values before they fill the element. We can also add other elements after FillCompute. Since compute is a
generator, these elements can be either simple functions or Run elements. A sequence with a FillCompute
element is called a FillComputeSeq.

Here is a working example:

Список 2: tutorial/2_split/main1.py

data_file = os.path.join("..", "data", "normal_3d.csv")
s = Sequence(

ReadData(),
Split([

(
lambda vec: vec[0],
Histogram(mesh((-10, 10), 10)),
ToCSV(),
Writer("output", "x"),

),
(

lambda vec: vec[1],
Histogram(mesh((-10, 10), 10)),
ToCSV(),
Writer("output", "y"),

),
]),
RenderLaTeX("histogram_1d.tex", "templates"),
Writer("output"),
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

Lena Histogram is a FillCompute element. The elements of the list in Split (tuples in this example) during
the initialization of Split are transformed into FillCompute sequences. The lambdas select parts of vectors,
which will fill the corresponding histogram. After the histogram is filled, it is given appropriate name by
Writer (so that they could be distinguished in the following flow).

Writer has two initialization parameters: the default directory and the default file name. Writer only
writes strings (and unicode in Python 2). Its corresponding context is called output (as its module). If
output is missing in the context, values pass unchanged. Otherwise, file name and extension are searched in
context.output. If output.filename or output.fileext are missing, then the default file name or «txt» are used.
The default file name should be used only when you are sure that only one file is going to be written, otherwise
it will be rewritten every time. The defaults Writer ’s parameters are empty string (current directory) and
«output» (resulting in output.txt).

ToCSV yields a string and sets context.output.fileext to «csv». In the example above Writer objects write
CSV data to output/x.csv and output/y.csv.

For each file written, Writer yields a tuple (file path, context), where context.output.filepath is updated with
the path to file.

After the histograms are filled and written, Split yields them into the following flow in turn. The containing
sequence s doesn’t distinguish Split from other elements, because Split acts as any Run element.

1.2. Split 13

Lena Documentation, Выпуск 0.1

1.2.2 Variables

One of the basic principles in programming is «don’t repeat yourself» (DRY).

In the example above, we wanted to give distinct names to histograms in different analysis branches, and
used two writers to do that. However, we can move ToCSV and Writer outside the Split (and make our
code one line shorter):

Список 3: tutorial/2_split/main2.py

from lena.output import MakeFilename
s = Sequence(

ReadData(),
Split([

(
lambda vec: vec[0],
Histogram(mesh((-10, 10), 10)),
MakeFilename("x"),

),
(

lambda vec: vec[1],
Histogram(mesh((-10, 10), 10)),
MakeFilename("y"),

),
]),
ToCSV(),
Writer("output"),
... as earlier ...

)

Element MakeFilename adds file name to context.output. Writer doesn’t need a default file name anymore.
Now it writes two different files, because context.output.filename is different.

The code that we’ve written now is very explicit and flexible. We clearly see each step of the analysis and it
as a whole. We control output names and we can change the logic as we wish by adding another element or
lambda. The structure of our analysis is very transparent, but the code is not beautiful enough.

Lambdas don’t improve readability. Indices 0 and 1 look like magic constants. They are connected to names
x and y in the following flow, but let us unite them in one element (and improve the cohesion of our code):

Список 4: tutorial/2_split/main3.py

from lena.variables import Variable

def main():
data_file = os.path.join("..", "data", "normal_3d.csv")
writer = Writer("output")
s = Sequence(

ReadData(),
Split([

(
Variable("x", lambda vec: vec[0]),
Histogram(mesh((-10, 10), 10)),

),
(

Variable("y", lambda vec: vec[1]),
Histogram(mesh((-10, 10), 10)),

),
(continues on next page)

14 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

(
Variable("z", lambda vec: vec[2]),
Histogram(mesh((-10, 10), 10)),

),
]),
MakeFilename("{{variable.name}}"),
ToCSV(),
writer,
RenderLaTeX("histogram_1d.tex", "templates"),
writer,
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

A Variable is essentially a function with a name. It transforms data and adds its own name to
context.variable.name.

In this example we initialize a variable with a name and a function. It can accept arbitrary keyword
arguments, which will be added to its context. For example, if our data is a series of (positron, neutron)
events, then we can make a variable to select the second event:

neutron = Variable(
"neutron", lambda double_ev: double_ev[1],
latex_name="n", type="particle"

)

In this case context.variable will be updated not only with name, but also latex_name and type. In code their
values can be got as variable’s attributes (e.g. neutron.latex_name). Variable’s function can be initialized
with the keyword getter and is available as a method getter.

MakeFilename accepts not only constant, but also format strings, which take arguments from context. In
our example, MakeFilename(«{{variable.name}}») creates file name from context.variable.name.

Note also that since two Writers do the same thing, we rewrote them as one object.

Combine

Variables can be joined into a multidimensional variable using Combine.

Combine(var1, var2, . . .) applied to a value is a tuple ((var1.getter(value), var2.getter(value), . . .), context).
The first element of the tuple is value transformed by each of the composed variables. Variable.getter is a
function that returns only data without context.

Combine is a subclass of a Variable, and it accepts arbitrary keywords during initialization. All positional
arguments must be Variables. Name of the combined variable can be passed as a keyword argument. If not
provided, it is its variables“ names joined with „_“.

The resulting context is that of a usual Variable updated with context.variable.combine, where combine is a
tuple of each variable’s context.

Combine has an attribute dim, which is the number of its variables. A constituting variable can be
accessed using its index. For example, if cv is Combine(var1, var2), then cv.dim is 2, cv.name is
var1.name_var2.name, and cv[1] is var2.

Combine variables are used for multidimensional plots.

1.2. Split 15

Lena Documentation, Выпуск 0.1

Compose

When we put several variables or functions into a sequence, we obtain their composition. In the Lena
framework we want to preserve as much context as possible. If some previous element was a Variable, its
context is moved into variable.compose subcontext.

Function composition can be also defined as variables.Compose.

In this example we first select the neutron part of the data, and then the x coordinate:

>>> from lena.variables import Variable, Compose
>>> # data is pairs of (positron, neutron) coordinates
>>> data = [((1.05, 0.98, 0.8), (1.1, 1.1, 1.3))]
>>> x = Variable(
... "x", lambda coord: coord[0], type="coordinate"
...)
>>> neutron = Variable(
... "neutron", latex_name="n",
... getter=lambda double_ev: double_ev[1], type="particle"
...)
>>> x_n = Compose(neutron, x)
>>> x_n(data[0])[0] # data
1.1

Data part of the result, as expected, is the composition of variables neutron and x. Same result could be
obtained as a sequence of variables: Sequence(neutron, x).run(data), but the context of Compose is created
differently.

The name of the composed variable is names of its variables (from left to right) joined with underscore. If
there are two variables, LaTeX name will be also created from their names (or LaTeX names, if present) as
a subscript in reverse order. In our example the context will be this:

>>> x_n(data[0])[1]
{

'variable': {
'name': 'neutron_x', 'particle': 'neutron',
'latex_name': 'x_{n}', 'coordinate': 'x', 'type': 'coordinate',
'compose': {

'type': 'particle', 'latex_name': 'n',
'name': 'neutron', 'particle': 'neutron'

},
}

}

Context of the composed variable is updated with a compose subcontext, which makes it similar to the
context produced by variables in a sequence.

As for any variable, name or other parameters can be passed as keyword arguments during initialization.

Keyword type has a special meaning. If present, then during initialization of a variable its context is
updated with {variable.type: variable.name} pair. During variable composition (in Compose or by subsequent
application to the flow) context.variable is updated with new variable’s context, but if its type is different, it
will persist. This allows access to context.variable.particle even if it was later composed with other variables.

1.2.3 Analysis example

Let us combine what we’ve learnt before and use it in a real analysis. An important change would be that
if we create 2-dimensional plots, we add another template for that. Below is a small example. All template

16 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

commands were explained in the first part of the tutorial.

Список 5: tutorial/2_split/templates/histogram_2d.tex

\documentclass{standalone}
\usepackage{tikz}
\usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer}
\pgfplotsset{compat=1.15}

\BLOCK{ set varx = variable.combine[0] }
\BLOCK{ set vary = variable.combine[1] }

\begin{document}
\begin{tikzpicture}

\begin{axis}[
view={0}{90},
grid=both,
\BLOCK{ set xcols = histogram.nbins[0]|int + 1 }
\BLOCK{ set ycols = histogram.nbins[1]|int + 1 }
mesh/cols=\VAR{xcols},
mesh/rows=\VAR{ycols},
colorbar horizontal,
xlabel = {$\VAR{ varx.latex_name }$

\BLOCK{ if varx.unit }[$\mathrm{\VAR{ varx.unit }}$]\BLOCK{ endif }},
ylabel = {$\VAR{ vary.latex_name }$

\BLOCK{ if vary.unit }[$\mathrm{\VAR{ vary.unit }}$]\BLOCK{ endif }},
]
\addplot3 [

surf,
mesh/ordering=y varies,

] table [col sep=comma, header=false] {\VAR{ output.filepath }};
\end{axis}

\end{tikzpicture}
\end{document}

If an axis has a unit, it will be added to its label (like x [cm]).

RenderLaTeX accepts a function as the first initialization argument or as a keyword select_template. That
function must accept a value (presumably a (data, context) pair) from the flow, and return a template file
name (to be found inside template_path).

Список 6: tutorial/2_split/main4.py

from __future__ import print_function

import os

import lena.context
import lena.flow
from lena.core import Sequence, Split, Source
from lena.structures import Histogram
from lena.math import mesh
from lena.output import ToCSV, Writer, LaTeXToPDF, PDFToPNG
from lena.output import MakeFilename, RenderLaTeX
from lena.variables import Variable, Compose, Combine

from read_data import ReadDoubleEvents
(continues on next page)

1.2. Split 17

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

positron = Variable(
"positron", latex_name="e^+",
getter=lambda double_ev: double_ev[0], type="particle"

)
neutron = Variable(

"neutron", latex_name="n",
getter=lambda double_ev: double_ev[1], type="particle"

)
x = Variable("x", lambda vec: vec[0], latex_name="x", unit="cm", type="coordinate")
y = Variable("y", lambda vec: vec[1], latex_name="y", unit="cm", type="coordinate")
z = Variable("z", lambda vec: vec[2], latex_name="z", unit="cm", type="coordinate")

coordinates_1d = [
(

coordinate,
Histogram(mesh((-10, 10), 10)),

)
for coordinate in [

Compose(particle, coord)
for coord in x, y, z
for particle in positron, neutron

]
]

def select_template(val):
data, context = lena.flow.get_data_context(val)
if lena.context.get_recursively(context, "histogram.dim", None) == 2:

return "histogram_2d.tex"
else:

return "histogram_1d.tex"

def main():
data_file = os.path.join("..", "data", "double_ev.csv")
writer = Writer("output")
s = Sequence(

ReadDoubleEvents(),
Split(

coordinates_1d
+
[(

particle,
Combine(x, y, name="xy"),
Histogram(mesh(((-10, 10), (-10, 10)), (10, 10))),
MakeFilename("{{variable.particle}}/{{variable.name}}"),

)
for particle in positron, neutron

]
),
MakeFilename("{{variable.particle}}/{{variable.coordinate}}"),
ToCSV(),
writer,
RenderLaTeX(select_template, template_path="templates"),

(continues on next page)

18 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

writer,
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

if __name__ == "__main__":
main()

We import ReadDoubleEvents from a separate file. That class is practically the same as earlier, but it yields
pairs of events instead of one by one.

We define coordinates_1d as a simple list of coordinates“ composition. Note that we could make all
combinations directly using the language. We could also do that in Split, but if we use all these coordinates
together in different analyses or don’t want to clutter the algorithm code, we can separate them.

In our new function select_template we use lena.context.get_recursively. This function is needed because we
often have nested dictionaries, and Python’s dict.get method doesn’t recurse. We provide the default return
value None, so that it doesn’t raise an exception in case of a missing key.

In the Split element we fill histograms for 1- and 2-dimensional plots in one run. There are two MakeFilename
elements, but MakeFilename doesn’t overwrite file names set previously.

We created our first 2-dimensional histogram using lena.math.mesh. It accepts parameters ranges and nbins.
In a multidimensional case these parameters are tuples of ranges and number of bins in corresponding
dimensions, as in mesh(((-10, 10), (-10, 10)), (10, 10)).

After we run this script, we obtain two subdirectories in output for positron and neutron, each containing 4
plots (both pdf and png); in total 8 plots with proper names, units, axes labels, etc. It is straightforward to
add other plots if we want, or to disable some of them in Split by commenting them out. The variables that
we defined at the top level could be reused in other modules or moved to a separate module.

Note the overall design of our algorithm. We prepare all necessary data in ReadDoubleEvents. After that,
Split uses different parts of these double events to create different plots. All important parameters should be
contained in data itself. These allows a separation of data from presentation.

The knowledge we’ll learn by the end of this chapter will be sufficient for most of practical analyses. Following
sections give more details about Lena elements and usage.

1.2.4 Adapters, elements and sequences

Objects don’t need to inherit from Lena classes to be used in the framework. Instead, they have to implement
methods with specified names (like run, fill, etc). This is called structural subtyping in Python1.

The specified method names can be changed using adapters. For example, if we have a legacy class

class MyEl():
def my_run(self, flow):

for val in flow:
yield val

then we can create a Run element from a MyEl object with the adapter Run:
1 PEP 544 – Protocols: Structural subtyping (static duck typing): https://www.python.org/dev/peps/pep-0544

1.2. Split 19

https://www.python.org/dev/peps/pep-0544

Lena Documentation, Выпуск 0.1

>>> from lena.core import Run
>>> my_run = Run(MyEl(), run="my_run")
>>> list(my_run.run([1, 2, 3]))
[1, 2, 3]

The adapter receives method name as a keyword argument. After it is created, it can be called with a method
named run or inserted into a Lena sequence.

Similarly, a FillCompute adapter accepts names for methods fill and compute:

FillCompute(el, fill='fill', compute='compute')

If callable methods fill and compute were not found in el, LenaTypeError is raised.

What other types of elements are possible in data analysis? A common algorithm in physics is event selection.
We analyse a large set of data looking for specific events. These events can be missing there or contained in
a large quantity. To deal with this, we have to be prepared not to consume all flow (as a Run element does)
and not to store all flow in the element before that is yielded. We create an element with a fill method, and
call the second method request. A FillRequest element is similar to FillCompute, but request can be called
multiple times. As with FillComputeSeq, we can add Call elements (lambdas) before a FillRequest element
and Call or Run elements after that to create a sequence FillRequestSeq.

Elements can be transformed one into another. During initialization a Sequence checks for each its argument
whether it has a run method. If it is missing, it tries to convert the element to a Run element using the
adapter.

Run can be initialized from a Call or a FillCompute element. A callable is run as a transformation function,
which accepts single values from the flow and returns their transformations for each value:

for val in flow:
yield self._el(val)

A FillCompute element is run the following way: first, fill(value) is called for the whole flow. After the flow
is exhausted, compute() is called.

There are algorithms and structures which are inherently not memory safe. For example,
lena.structures.Graph stores all filled data as its points, and it is a FillRequest element. Since FillRequest
can’t be used directly in a Sequence, or if we want to yield only the final result once, we cast that with
FillCompute(Graph()). We can do that when we are sure that our data won’t overflow memory, and that
cast will be explicit in our code.

To sum up, adapters in Lena can be used for several purposes:

• provide a different name for a method (Run(my_obj, run=»my_run»)),

• hide unused methods to prevent ambiguity (if an element has many methods, we can wrap that in an
adapter to expose only the needed ones),

• automatically convert objects of one type to another in sequences (FillCompute to Run),

• explicitly cast object of one type to another (FillRequest to FillCompute).

1.2.5 Split

In the examples above, Split contained several FillComputeSeq sequences. However, it can be used with all
other sequences we know.

Split has a keyword initialization argument bufsize, which is the size of the buffer for the input flow.

20 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

During Split.run(flow), the flow is divided into subslices of bufsize. Each subslice is processed by sequences
in the order of their initializer list (the first positional argument in Split.__init__).

If a sequence is a Source, it doesn’t accept the incoming flow, but produces its own complete flow and
becomes inactive (is not called any more).

A FillRequestSeq is filled with the buffer contents. After the buffer is finished, it yields all values from
request().

A FillComputeSeq is filled with values from each buffer, but yields values from compute only after the whole
flow is finished.

A Sequence is called with run(buffer) instead of the whole flow. The results are yielded for each buffer. If
the whole flow must be analysed at once, don’t use such a sequence in Split.

If the flow was empty, each __call__ (from Source), compute, request or run is called nevertheless.

Source within Split can be used to add new data to flow. For example, we can create Split([source, ()]), and
in this place of a sequence first all data from source will be generated, then all data from preceding elements
will be passed (empty Sequence passes values unchanged). This can be used to provide several flows to a
further element (like data, Monte Carlo and analytical approximation).

Split acts both as a sequence (because it contains sequences) and as an element. If all its elements (sequences,
to be precise) have the same type, Split will have methods of this type. For example, if Split has only
FillComputeSeq inside, it will create methods fill and compute. During fill all its sequences will be filled.
During compute their results will be yielded in turn (all results from the first sequence, then from the second,
etc). Split with Source sequences will act as a Source. Of course, Split can be used within a Split.

1.2.6 Context. Performance and safety

Dictionaries in Python are mutable, that is their content can change. If an element stores the current context,
that may be changed by some other element. The simplest example: if your original data has context, it will
be changed after being processed by a sequence.

This is how a typical Run element deals with context. To be most useful, it must be prepared to accept data
with and without context:

class RunEl():
def __init__(self):

self._context = {"subcontext": "el"}

def run(self, flow):
for val in flow:

data, context = lena.flow.get_data_context(val)
... do something ...
lena.flow.update_recursively(context, self._context)
yield (new_data, context)

lena.flow.get_data_context(value) splits value into a pair of (data, context). If value contained only data
without context, the context part will be an empty dictionary (therefore it is safe to use get_data_context
with any value). If only one part is needed, lena.flow.get_data or lena.flow.get_context can be used.

If subcontext can contain other elements except el, then to preserve them we call not context.update, but
lena.flow.update_recursively. This function doesn’t overwrite subdictionaries, but only conflicting keys within
them. In this case context.subcontext key will always be set to el, but if self._context.subcontext were a
dictionary {«el»: «el1»}, then all context.subcontext keys (if present) except el would remain.

Usually elements in a Sequence yield computed data and context, and never use or change that again. In
Split, however, several sequences use the same data simultaneously. This is why Split makes a deep copy of

1.2. Split 21

Lena Documentation, Выпуск 0.1

the incoming flow in its buffer. A deep copy of a context is completely independent of the original or its
other copies. However, to copy an entire dictionary requires some computational cost.

Split can be initialized with a keyword argument copy_buf. By default it is True, but can be set to False
to disable deep copy of the flow. This may be a bit faster, but do it only if you are absolutely sure that your
analysis will remain correct.

There are several things in Lena that help against context interference:

• elements change their own context (Writer changes context.output and not context.variable),

• if Split has several sequences, it makes a deep copy of the flow before feeding that to them,

• FillCompute and FillRequest elements make a deep copy of context before yielding3.

This is how a FillCompute element is usually organised in Lena:

class MyFillComputeEl():
def __init__(self):

self._val = 0
self._context = {"subcontext": "el"}
self._cur_context = {}

def fill(self, val):
data, context = lena.flow.get_data_context(val)
self._val += data
self._cur_context = context

def compute(self):
context = copy.deepcopy(self._cur_context)
or copy.deepcopy(self._context):
lena.flow.update_recursively(context, self._context)
yield (self._val, context)

During fill the last context is saved. During compute a deep copy of that is made (since compute is called
only once, this can be done without performance loss), and it is updated with self._context.

Performance is not the highest priority in Lena, but it is always nice to have. When possible, optimizations
are made. Performance measurements show that deepcopy can take most time in Lena analysis2. A linear
Sequence or Run elements don’t do a deep copy of data. If Split contains several sequences, it doesn’t do a
deep copy of the flow for the last sequence. It is possible to circumvent all copying of data in Split to gain
more performance at the cost of more precautions and more streamlined code.

Summary

Several analyses can be performed on one flow using an element Split. It accepts a list of sequences as its
first initialization argument.

Since Split divides the flow into buffered slices, elements must be prepared for that. In this part of the
tutorial we introduced the FillCompute and the FillRequest elements. The former yields the results when

3 For framework elements this is obligatory, for user code this is recommended.
2 One can use tutorial/2_split/performance.py to make a quick analysis. To create 3 histograms (like in main4.py example

above) for one million generated events it took 82 seconds in Python 2 on a laptop. The longest total time was spent for
copy.deepcopy (20 seconds). For Python 3, PyPy and PyPy 3 the total time was 71, 23 and 16 seconds. These numbers are
approximate (the second measurement for PyPy gave 19 seconds). If we change Variables into lambdas, add MakeFilename
after Histogram and set copy_buf=False in Split, the total time will be 18 seconds for Python 2 and 4 seconds for PyPy 3.

This difference may be not important in practice: for example, the author usually deals with data sets of several tens of
thousands events, and a large amount of time is spent to create 2-dimensional plots with pdflatex.

22 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

its compute method is called. It is supposed that FillCompute is run only once and that it is memory safe
(that it reduces data). If an element can consume much memory, it must be a FillRequest element.

If we add Call elements before and Run and Call elements after our FillCompute or FillRequest elements,
we can generalize them to sequences FillComputeSeq and FillRequestSeq. They are created implicitly during
Split initialization.

Variables connect functions with context. They have names and can have LaTeX names, units and other
parameters, which helps to create plots and write output files. Compose corresponds to function composition,
while Combine creates multidimensional variables for multidimensional plots.

If an element has methods with unusual names, adapters can be used to relate them to the framework names.
Adapters are also used to explicitly cast one type of element to another or to implicitly convert an element
to an appropriate type during a sequence initialization.

To be most useful, elements should be prepared to accept values consisting of only data or data with context.
To work safely with a mutable context, a deep copy of that must be made in compute or request. On the
other hand, unnecessary deep copies (in run, fill or __call__) may slightly decrease the performance. Lena
allows optimizations if they are needed.

Exercises

1. Extend the Sum example in this chapter so that it could handle context. Check that it works.

2. In the analysis example main4.py there are two MakeFilename elements. Is it possible to use only one
of them? How?

3. We developed the example main2.py and joined lambda and filename into a Variable. We could also
add a name to the Histogram. Which design decision would be better?

4. What are the consequences of calling compute even for an empty flow?

5. Alexander writes a diploma thesis involving some data analysis and wants to choose a framework for
that. He asks colleagues and professors, and stops at three possible options. One library is easy to
use and straight to the point, and is sufficient for most diploma theses. Another library is very rich
and used by seasoned professionals, and its full power surpasses even its documentation. The third
framework doesn’t provide a plenty of mathematical functions, but promises structured and beautiful
code. Which one would you advise?

1.3 Ответы на упражнения

1.3.1 Часть 1

Упр. 1

End.run в данном случае не генератор. Чтобы сделать его генератором, добавьте где-нибудь инструк-
цию yield. Также заметьте, что с версии Python 3.7 все StopIteration считаются ошибками, в соответ-
ствии с PEP 479. Используйте вместо этого просто return. Вот реализация в lena.flow :

class End(object):
"""Stop sequence here."""

def run(self, flow):
"""Exhaust all preceding flow and stop iteration
(yield nothing to the following flow).

(continues on next page)

1.3. Ответы на упражнения 23

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

"""
for val in flow:

pass
return
иначе это не будет генератор
yield "unreachable"

Упр. 2

>>> def my_generator():
... print("входим в мой генератор")
... yield True
...
>>> results = my_generator()
>>> list(results)
входим в мой генератор
[True]

Упр. 3

Реализация Count дана ниже. Важное соображение, что в последовательности могут быть несколько
Count, поэтому дайте им разные имена чтобы отличить.

class Count(object):
"""Count items that pass through.

After the flow is exhausted, add {*name*: count} to the *context*.
"""

def __init__(self, name="counter"):
"""*name* is this counter's name."""
self._name = name
self._count = 0
self._cur_context = {}

def run(self, flow):
"""Yield incoming values and increase counter.

When the incoming flow is exhausted,
update last value's context with *(count, context)*.

If the flow was empty, nothing is yielded
(so *count* can't be zero).
"""
try:

prev_val = next(flow)
except StopIteration:

иначе это будет ошибка после PEP 479
https://stackoverflow.com/a/51701040/952234
return
raise StopIteration

count = 1
for val in flow:

(continues on next page)

24 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

yield prev_val
count += 1
prev_val = val

val = prev_val
data, context = lena.flow.get_data(val), lena.flow.get_context(val)
context.update({self._name: count})
yield (data, context)

Упр. 4

Простая функция вывода может быть следующей:

def output(output_dir="output"):
writer = lena.output.Writer(output_dir)
s = lena.core.Sequence(

lena.output.ToCSV(),
writer,
lena.context.Context(),
lena.output.RenderLaTeX(), # инициализируйте здесь корректно
writer,
lena.output.LaTeXToPDF(),
lena.output.PDFToPNG(),

)
return s

Затем поместите output() в последовательность, и новые инициализированные элементы будут в неё
помещены.

Этот подход краток, но он менее гибкий и явный. На практике детализация из нескольких выходных
элементов никогда не была проблемой для автора.

Упр. 5

Автору неизвестен простой для пользователя способ остановить функцию и возобновить её в заданной
точке. Сообщите автору, если вы знаете лучшие ответы на любое из этих упражнений.

Михаил Зелёный даёт такое объяснение:

Есть два типа моделей: push и pull. Если у вас есть цепочка, то в случае push модели вычисления
инициирует первый член цепочки, и он пихает данные дальше. В данном случае ветвление (форк)
делается легко, он просто в определённый момент пихает данные не в одну цепочку, а в две.

В случае pull модели вычисления инициирует последний член цепочки. Соответственно, если мы хотим
разветвить цепочку, то уже надо думать, что делать: или запускать только когда запросили все потре-
бители, или делать буферизацию, или стартовать с одного потребителя, а в остальные пропихивать
данные по push модели.

1.3.2 Часть 2

Упр. 1

This is the Sum implementation from lena.math:

1.3. Ответы на упражнения 25

https://habr.com/ru/post/490518/#comment_21342580

Lena Documentation, Выпуск 0.1

class Sum(object):
"""Calculate sum of input values."""

def __init__(self, start=0):
"""*start* is the initial value of sum."""
start is similar to Python's builtin *sum* start.
self._start = start
self.reset()

def fill(self, value):
"""Fill *self* with *value*.

The *value* can be a *(data, context)* pair.
The last *context* value (considered empty if missing)
sets the current context.
"""
data, context = lena.flow.get_data_context(value)
self._sum += data
self._cur_context = context

def compute(self):
"""Calculate the sum and yield.

If the current context is not empty, yield *(sum, context)*.
Otherwise yield only *sum*.
"""
if not self._cur_context:

yield self._sum
else:

yield (self._sum, copy.deepcopy(self._cur_context))

def reset(self):
"""Reset sum and context.

Sum is reset to the *start* value and context to {}.
"""
self._sum = copy.deepcopy(self._start)
self._cur_context = {}

Упр. 2

Delete the first MakeFilename and change the second one to

MakeFilename("{{variable.particle}}/{{variable.name}}")

Упр. 3

We believe that the essence of data is captured in the function with which it was obtained. Histogram is just
its presentation. It may be tempting to name a histogram just for convenience, but a general MakeFilename
would be more powerful.

Functional programming suggests that larger functions should be decomposed into smaller ones, while object-
oriented design praises code cohesion. The decisions above were made by choosing between these principles.
There are cases when a histogram is data itself. In such situations, however, the final result is often not a
histogram but a function of that, like a mean or a mode (which again suggests a different name).

26 Глава 1. Пособие

Lena Documentation, Выпуск 0.1

Упр. 4

In part 1 of the tutorial there was introduced an element End, which stops the flow at its location. However,
if there are Histograms in the following flow, they will be yielded even if nothing was filled into them. Empty
histogram is a legitimate histogram state. It may be also filled, but the result may fall out of the histogram’s
range. It is possible to write a special element if needed to check whether the flow was empty.

In the next chapter we will present a specific analysis during which a histogram may not be filled, but it
must be produced. A FillCompute element is more general than a histogram (which we use here just for a
concrete example).

Note also that if a histogram was not filled, preceding variables weren’t called. The histogram will have no
context, probably won’t have a name and won’t be plotted correctly. Take an empty flow into account when
creating your own FillCompute elements.

Упр. 5

It depends on the student’s priorities. If he wants to finish the diploma never to return to programming, or if
he has a lot of work to do apart from writing code, the fastest option might be the best. General algorithms
have a more complicated interface. However, if one decides to rely upon a «friendly» library, there is a risk
that the programmer will have to rewrite all code when more functionality becomes needed.

Architectural choices rise for middle-sized or large projects. If the student’s personal code becomes large and
more time is spent on supporting and extending that, it may be a good time to define the architecture. Here
the author estimates «large» programs to start from one thousand lines.

Another distinction is that when using a library one learns how to use a library. When using a good framework,
one learns how to write good code. Many algorithms in programming are simple, but to choose a good design
may be much more difficult, and to learn how to create good programs yourself may take years of studying
and experience. When you feel difficulties with making programming decisions, it’s time to invest into design
skills.

1.3. Ответы на упражнения 27

Lena Documentation, Выпуск 0.1

28 Глава 1. Пособие

Глава 2

Reference

2.1 Context

Elements:

Context ([d, formatter]) Dictionary with easy-to-read formatting.
UpdateContext (subcontext, update[, value, . . .]) Update context of passing values.

Functions:

contains (d, s) Check that a dictionary d contains a subdictionary
defined by a string s.

difference (d1, d2) Return a dictionary with items from d1 not
contained in d2.

format_context (format_str) Create a function that formats a given string using
a context.

get_recursively (d, keys[, default]) Get value from a dictionary d recursively.
intersection (*dicts, **kwargs) Return a dictionary, such that each of its items are

contained in all dicts (recursively).
str_to_dict (s) Create a dictionary from a dot-separated string s.
str_to_list (s) Like str_to_dict() , but return a flat list.
update_nested (d, other) Update dictionary d with items from other

dictionary.
update_recursively (d, other) Update dictionary d with items from other

dictionary.

2.1.1 Elements

class Context(d=None, formatter=None)

29

Lena Documentation, Выпуск 0.1

Базовые классы: dict

Dictionary with easy-to-read formatting.

Context provides a better representation for context. Example:

>>> from lena.context import Context
>>> c = Context({"1": 1, "2": {"3": 4}})
>>> print(c) # doctest: +NORMALIZE_WHITESPACE
{

"1": 1,
"2": {

"3": 4
}

}

Initialize from a dictionary d (empty by default).

Representation is defined by the formatter. That must be a callable, which should accept a dictionary
and return a string. The default is json.dumps.

Совет: JSON and Python representations are different. In particular, JSON True is written as
lowercase true. To convert JSON back to Python, use json.loads(string).

If formatter is given but is not callable, LenaTypeError is raised.

__call__(value)
Convert value’s context to Context on the fly.

If the value is a (data, context) pair, convert its context part to Context . If the value doesn’t
contain a context, it is created as an empty Context .

When a Context is used as a sequence element, its initialization argument d has no effect on the
produced values.

class UpdateContext(subcontext, update, value=False, default=<object object>,
skip_on_missing=False, raise_on_missing=False, recursively=True)

Update context of passing values.

subcontext is a string representing the part of context to be updated (for example, «output.plot»).
subcontext must be non-empty.

update will become the value of subcontext during __call__() . It can be one of three different types:

• a simple value (not a string),

• a context formatting string,

• a context value (a string in curly braces).

A context formatting string is any string with arguments enclosed in double braces (for example,
«{{variable.type}}_{{variable.name}}»). Its argument values will be filled from context during
__call__() . If a formatting argument is missing in context, it will be substituted with an empty
string.

To set update to a value from context (not a string), the keyword argument value must be set
to True and the update format string must be a non-empty single expression in double braces
(«{{variable.compose}}»).

If update corresponds to a context value and a formatting argument is missing in the context,
LenaKeyError will be raised unless a default is set. In this case default will be used for the update
value.

30 Глава 2. Reference

Lena Documentation, Выпуск 0.1

If update is a context formatting string, default keyword argument can’t be used. To set
a default value other than an empty string, use a jinja2 filter. For example, if update is
«{{variable.name|default(„x“)}}», then update will be set to «x» both if context.variable.name is
missing and if context.variable is missing itself.

Other variants to deal with missing context values are:

• to skip update (don’t change the context), set by skip_on_missing, or

• to raise LenaKeyError (set by raise_on_missing).

Only one of default, skip_on_missing or raise_on_missing can be set, otherwise LenaValueError is
raised. None of these options can be used if update is a simple value.

If recursively is True (default), not overwritten existing values of subcontext are preserved. Otherwise,
all existing values of subcontext (at its lowest level) are removed. See also update_recursively() .

Example:

>>> from lena.context import UpdateContext
>>> make_scatter = UpdateContext("output.plot", {"scatter": True})
>>> # call directly
>>> make_scatter(((0, 0), {}))
((0, 0), {'output': {'plot': {'scatter': True}}})
>>> # or use in a sequence

If subcontext is not a string, LenaTypeError is raised. If it is empty, LenaValueError is raised. If value
is True, braces can be only the first two and the last two symbols of update, otherwise LenaValueError
is raised.

__call__(value)
Update value’s context.

If the value is updated, subcontext is always created (also if the value contains no context).

LenaKeyError is raised if raise_on_missing is True and the update argument is missing in value’s
context.

2.1.2 Functions

contains(d, s)
Check that a dictionary d contains a subdictionary defined by a string s.

True if d contains a subdictionary that is represented by s. Dots in s mean nested subdictionaries. A
string without dots means a key in d.

Example:

>>> d = {'fit': {'coordinate': 'x'}}
>>> contains(d, "fit")
True
>>> contains(d, "fit.coordinate.x")
True
>>> contains(d, "fit.coordinate.y")
False

If the most nested element of d to be compared with s is not a string, its string representation is used
for comparison. See also str_to_dict() .

2.1. Context 31

Lena Documentation, Выпуск 0.1

difference(d1, d2)
Return a dictionary with items from d1 not contained in d2.

If a key is present both in d1 and d2 but has different values, it is included into the difference.

format_context(format_str)
Create a function that formats a given string using a context.

It is recommended to use jinja2.Template. Use this function only if you don’t have jinja2.

format_str is a Python format string with double braces instead of single ones. It must contain all
non-empty replacement fields, and only simplest formatting without attribute lookup. Example:

>>> f = format_context("{{x}}")
>>> f({"x": 10})
'10'

When calling format_context, arguments are bound and a new function is returned. When called with
a context, its keys are extracted and formatted in format_str.

Keys can be nested using a dot, for example:

>>> f = format_context("{{x.y}}_{{z}}")
>>> f({"x": {"y": 10}, "z": 1})
'10_1'

This function does not work with unbalanced braces. If a simple check fails, LenaValueError is
raised. If format_str is not a string, LenaTypeError is raised. All other errors are raised only during
formatting. If context doesn’t contain the needed key, LenaKeyError is raised. Note that string
formatting can also raise a ValueError, so it is recommended to test your formatters before using
them.

get_recursively(d, keys, default=<object object>)
Get value from a dictionary d recursively.

keys can be a list of simple keys (strings), a dot-separated string or a dictionary with at most one key
at each level. A string is split by dots and used as a list. A list of keys is searched in the dictionary
recursively (it represents nested dictionaries). If any of them is not found, default is returned if «default»
is given, otherwise LenaKeyError is raised.

If keys is empty, d is returned.

Examples:

>>> context = {"output": {"latex": {"name": "x"}}}
>>> get_recursively(context, ["output", "latex", "name"], default="y")
'x'
>>> get_recursively(context, "output.latex.name")
'x'

Примечание: Python’s dict.get in case of a missing value returns None and never raises an error.
We implement it differently, because it allows more flexibility.

If d is not a dictionary or if keys is not a string, a dict or a list, LenaTypeError is raised. If keys is a
dictionary with more than one key at some level, LenaValueError is raised.

intersection(*dicts, **kwargs)
Return a dictionary, such that each of its items are contained in all dicts (recursively).

32 Глава 2. Reference

Lena Documentation, Выпуск 0.1

dicts are several dictionaries. If dicts is empty, an empty dictionary is returned.

A keyword argument level sets maximum number of recursions. For example, if level is 0, all dicts must
be equal (otherwise an empty dict is returned). If level is 1, the result contains those subdictionaries
which are equal. For arbitrarily nested subdictionaries set level to -1 (default).

Example:

>>> from lena.context import intersection
>>> d1 = {1: "1", 2: {3: "3", 4: "4"}}
>>> d2 = {2: {4: "4"}}
>>> # by default level is -1, which means infinite recursion
>>> intersection(d1, d2) == d2
True
>>> intersection(d1, d2, level=0)
{}
>>> intersection(d1, d2, level=1)
{}
>>> intersection(d1, d2, level=2)
{2: {4: '4'}}

This function always returns a dictionary or its subtype (copied from dicts[0]). All values are deeply
copied. No dictionary or subdictionary is changed.

If any of dicts is not a dictionary or if some kwargs are unknown, LenaTypeError is raised.

str_to_dict(s)
Create a dictionary from a dot-separated string s.

Dots represent nested dictionaries. s, if not empty, must have at least two dot-separated parts (a.b),
otherwise LenaValueError is raised.

If s is empty, an empty dictionary is returned. s can be a dictionary. In this case it is returned as it is.

Example:

>>> str_to_dict("a.b.c d")
{'a': {'b': 'c d'}}

str_to_list(s)
Like str_to_dict() , but return a flat list.

If the string s is empty, an empty list is returned. This is different from str.split : the latter would return
a list with one empty string. Contrarily to str_to_dict() , this function allows arbitrary number of
dots in s (or none).

update_nested(d, other)
Update dictionary d with items from other dictionary.

other must be a dictionary of one element, which is used as a key. If d doesn’t contain the key, d is
updated with other. If d contains the key, the value with that key is nested inside the copy of other at
the level which doesn’t contain the key. d is updated.

If d[key] is not a dictionary or if there is not one key in other, LenaValueError is raised.

update_recursively(d, other)
Update dictionary d with items from other dictionary.

other can be a dot-separated string. In this case str_to_dict() is used to convert it to a dictionary.

Existing values are updated recursively, that is including nested subdictionaries. For example:

2.1. Context 33

Lena Documentation, Выпуск 0.1

>>> d1 = {"a": 1, "b": {"c": 3}}
>>> d2 = {"b": {"d": 4}}
>>> update_recursively(d1, d2)
>>> d1 == {'a': 1, 'b': {'c': 3, 'd': 4}}
True
>>> # Usual update would have made d1["b"] = {"d": 4}, erasing "c".

Non-dictionary items from other overwrite those in d :

>>> update_recursively(d1, {"b": 2})
>>> d1 == {'a': 1, 'b': 2}
True

Both d and other must be dictionaries, otherwise LenaTypeError is raised.

2.2 Core

Sequences:

Sequence (*args) Sequence of elements, such that next takes input
from the previous during run.

Source (*args) Sequence with no input flow.
FillComputeSeq (*args) Sequence with one FillCompute element.
FillRequestSeq (*args, **kwargs) Sequence with one FillRequest element.
Split (seqs[, bufsize, copy_buf]) Split data flow and run analysis in parallel.

Adapters:

Call (el[, call]) Adapter to provide __call__(value) method.
FillCompute (el[, fill, compute]) Adapter for a FillCompute element.
FillInto (el[, fill_into, explicit]) Adapter for a FillInto element.
FillRequest (el[, fill, request, reset, bufsize]) Adapter for a FillRequest element.
Run (el[, run]) Adapter for a Run element.
SourceEl (el[, call]) Adapter to provide __call__() method.

Exceptions:

LenaAttributeError
LenaEnvironmentError The base class for exceptions that can occur outside

the Python system, like IOError or OSError.
LenaException Base class for all Lena exceptions.
LenaIndexError
LenaKeyError
LenaRuntimeError Raised when an error does not belong to other

categories.
LenaStopFill Signal that no more fill is accepted.
LenaTypeError
LenaValueError

34 Глава 2. Reference

Lena Documentation, Выпуск 0.1

2.2.1 Sequences

Lena combines calculations using sequences. Sequences consist of elements. Basic Lena sequences and element
types are defined in this module.

class Sequence(*args)
Sequence of elements, such that next takes input from the previous during run.

Sequence.run() must accept input flow. For sequence with no input data use Source .

args are objects which implement a method run(flow) or callables.

args can be a single tuple of such elements. In this case one doesn’t need to check argument type when
initializing a Sequence in a general function.

For more information about the run method and callables, see Run.

run(flow)
Generator, which transforms the incoming flow.

If this Sequence is empty, the flow passes untransformed, with a small change. This function
converts input flow to an iterator, so that it always contains both iter and next methods. This is
done for the flow entering the first sequence element and exiting from the sequence.

class Source(*args)
Sequence with no input flow.

First argument is the initial element with no input flow. Following arguments (if present) form a
sequence of elements, each accepting computational flow from the previous element.

>>> from lena.flow import CountFrom
>>> s = Source(CountFrom())
>>> for i in s():
... if i == 5:
... break
... print(i, end=" ")
0 1 2 3 4

For a sequence which transforms the incoming flow, use Sequence .

__call__()
Generate flow.

class FillComputeSeq(*args)
Sequence with one FillCompute element.

Input flow is preprocessed with the Sequence before the FillCompute element, then it fills the
FillCompute element.

When the results are computed, they are postprocessed with the Sequence after that element.

args form a sequence with a FillCompute element.

If args contain several FillCompute elements, only the first one is chosen (the subsequent ones are used
as simple Run elements). To change that, explicitly cast the first element to FillInto .

If FillCompute element was not found, or if the sequences before and after that could not be correctly
initialized, LenaTypeError is raised.

compute()
Compute the results and yield.

If the sequence after FillCompute is not empty, it postprocesses the results yielded from
FillCompute element.

2.2. Core 35

Lena Documentation, Выпуск 0.1

fill(value)
Fill self with value.

If the sequence before FillCompute is not empty, it preprocesses the value before filling
FillCompute.

class FillRequestSeq(*args, **kwargs)
Sequence with one FillRequest element.

Input flow is preprocessed with the Sequence before the FillRequest element, then it fills the FillRequest
element.

When the results are yielded from the FillRequest, they are postprocessed with the Sequence after that
element.

args form a sequence with a FillRequest element.

If args contains several FillRequest elements, only the first one is chosen (the subsequent ones are used
as simple Run elements). To change that, explicitly cast the first element to FillInto .

kwargs can contain bufsize, which is used during run. See FillRequest for more information on run.
By default bufsize is 1. Other kwargs raise LenaTypeError .

If FillRequest element was not found, or if the sequences before or after that could not be correctly
initialized, LenaTypeError is raised.

fill(value)
Fill self with value.

If the sequence before FillRequest is not empty, it preprocesses the value before filling FillRequest.

request()
Request the results and yield.

If the sequence after FillRequest is not empty, it postprocesses the results yielded from the
FillRequest element.

reset()
Reset the FillRequest element.

class Split(seqs, bufsize=1000, copy_buf=True)
Split data flow and run analysis in parallel.

seqs must be a list of Sequence, Source, FillComputeSeq or FillRequestSeq sequences (any other
container will raise LenaTypeError). If seqs is empty, Split acts as an empty Sequence and yields
all values it receives.

bufsize is the size of the buffer for the input flow. If bufsize is None, whole input flow is materialized in
the buffer. bufsize must be a natural number or None, otherwise LenaValueError is raised.

copy_buf sets whether the buffer should be copied during run. This is important if different sequences
can change input data and interfere with each other.

Common type: If each sequence from seqs has a common type, Split creates methods corresponding
to this type. For example, if each sequence is FillCompute, Split creates methods fill and compute
and can be used as a FillCompute sequence. fill fills all its subsequences (with copies if copy_buf
is True), and compute yields values from all sequences in turn (as would also do request or
Source.__call__).

run(flow)
Iterate input flow and yield results.

The flow is divided into subslices of bufsize. Each subslice is processed by sequences in the order
of their initializer list.

36 Глава 2. Reference

Lena Documentation, Выпуск 0.1

If a sequence is a Source, it doesn’t accept the incoming flow, but produces its own complete flow
and becomes inactive (is not called any more).

A FillRequestSeq is filled with the buffer contents. After the buffer is finished, it yields all values
from request().

A FillComputeSeq is filled with values from each buffer, but yields values from compute only after
the whole flow is finished.

A Sequence is called with run(buffer) instead of the whole flow. The results are yielded for each
buffer (and also if the flow was empty). If the whole flow must be analysed at once, don’t use
such a sequence in Split.

If the flow was empty, each call, compute, request or run is called nevertheless.

If copy_buf is True, then the buffer for each sequence except the last one is a deep copy of the
current buffer.

2.2.2 Adapters

Adapters allow to use existing objects as Lena core elements.

Adapters can be used for several purposes:

• provide an unusual name for a method (Run(my_obj, run=»my_run»)).

• hide unused methods to prevent ambiguity.

• automatically convert objects of one type to another in sequences (FillCompute to Run).

• explicitly cast object of one type to another (FillRequest to FillCompute).

Example:

>>> class MyEl(object):
... def my_run(self, flow):
... for val in flow:
... yield val
...
>>> my_run = Run(MyEl(), run="my_run")
>>> list(my_run.run([1, 2, 3]))
[1, 2, 3]

class Call(el, call=<object object>)
Adapter to provide __call__(value) method.

Name of the actually called method can be customized during the initialization.

The method __call__(value) is a simple (preferably pure) function, which accepts a value and returns
its transformation.

Element el must contain a callable method call or be callable itself.

If call method name is not provided, it is checked whether el is callable itself.

If Call failed to instantiate with el and call, LenaTypeError is raised.

__call__(value)
Transform the value and return.

class FillCompute(el, fill=’fill’, compute=’compute’)
Adapter for a FillCompute element.

2.2. Core 37

Lena Documentation, Выпуск 0.1

A FillCompute element has methods fill(value) and compute().

Method names can be customized through fill and compute keyword arguments during the initialization.

FillCompute can be explicitly cast from FillRequest. In this case compute is request.

If callable methods fill and compute or request were not found, LenaTypeError is raised.

compute()
Yield computed values.

fill(value)
Fill self with value.

class FillInto(el, fill_into=<object object>, explicit=True)
Adapter for a FillInto element.

Element el must implement fill_into method, be callable or be a Run element.

If no fill_into argument is provided, then fill_into method is searched, then __call__, then run. If
none of them is found and callable, LenaTypeError is raised.

Note that callable elements and elements with fill_into method have different interface. If the el is
callable, it is assumed to be a simple function, which accepts a single value and transforms that, and the
result is filled into the element by this adapter. fill_into method, on the contrary, takes two arguments
(element and value) and fills the element itself. This allows to use lambdas directly in FillInto.

A Run element is converted to FillInto this way: for each value the el runs a flow consisting of this
one value and fills the results into the output element. This can be done only if explicit is True.

fill_into(element, value)
Fill value into an element.

Value is transformed by the initialization element before filling el.

Element must provide a fill method.

class FillRequest(el, fill=’fill’, request=’request’, reset=True, bufsize=1)
Adapter for a FillRequest element.

A FillRequest element has methods fill(value) and request().

Names for fill and request can be customized during initialization.

FillRequest can be initialized from a FillCompute element. If a callable request method was not found,
el must have a callable compute method. request in this case is compute.

By default, FillRequest implements run method that splits the flow into subslices of bufsize elements.
If el has a callable run method, it is used instead of the default one.

If a keyword argument reset is True (default), el must have a method reset, and in this case :meth:‘reset‘
is called after each :meth:‘request‘ (including those during :meth:‘run‘). If *reset is False, reset() is
never called.

Attributes

bufsize is the maximum size of subslices during run.

bufsize must be a natural number, otherwise LenaValueError is raised. If callable fill and request
methods were not found, or FillRequest could not be derived from FillCompute, or if reset is True, but
el has no method reset, LenaTypeError is raised.

fill(value)
Fill self with value.

38 Глава 2. Reference

Lena Documentation, Выпуск 0.1

request()
Yield computed values.

May be called at any time, the flow may still contain zero or more items.

reset()
Reset the element el.

run(flow)
Implement run method.

First, fill is called for each value in a subslice of flow of self.bufsize size. After that, results are
yielded from self.request(). This repeats until the flow is exhausted.

If fill was not called even once (flow is empty), the results for a general FillRequest are undefined
(for example, it can run request or raise an exception). This adapter runs request in this case. If
the last slice is empty, request is not run for that. Note that the last slice may contain less than
bufsize values. If that is important, implement your own method.

A slice is a non-materialized list, which means that it will not take place of bufsize in memory.

class Run(el, run=<object object>)
Adapter for a Run element.

Name of the method run can be customized during initialization.

If run argument is supplied, el must be None or it must have a callable method with name given by
run.

If run keyword argument is missing, then el is searched for a method run. If that is not found, a type
cast is attempted.

A Run element can be initialized from a Call or a FillCompute element.

A callable element is run as a transformation function, which accepts single values from the flow and
returns their transformations for each value.

A FillCompute element is run the following way: first, el.fill(value) is called for the whole flow. After
the flow is exhausted, el.compute() is called.

It is possible to initialize Run using a generator function without an element. To do that, set the
element to None: Run(None, run=<my_function>).

If the initialization failed, LenaTypeError is raised.

Run is used implicitly during the initialization of Sequence .

run(flow)
Yield transformed elements from the incoming flow.

class SourceEl(el, call=<object object>)
Adapter to provide __call__() method. Name of the actually called method can be customized during
the initialization.

The __call__() method is a generator, which yields values. It doesn’t accept any input flow.

Element el must contain a callable method __call__ or be callable itself.

If call function or method name is not provided, it is checked whether el is callable itself.

If SourceEl failed to instantiate with el and call, LenaTypeError is raised.

__call__()
Yield generated values.

2.2. Core 39

Lena Documentation, Выпуск 0.1

2.2.3 Exceptions

All Lena exceptions are subclasses of LenaException and corresponding Python exceptions (if they exist).

exception LenaAttributeError

Базовые классы: lena.core.exceptions.LenaException , AttributeError

exception LenaEnvironmentError

Базовые классы: lena.core.exceptions.LenaException , OSError

The base class for exceptions that can occur outside the Python system, like IOError or OSError.

exception LenaException

Базовые классы: Exception

Base class for all Lena exceptions.

exception LenaIndexError

Базовые классы: lena.core.exceptions.LenaException , IndexError

exception LenaKeyError

Базовые классы: lena.core.exceptions.LenaException , KeyError

exception LenaNotImplementedError

Базовые классы: lena.core.exceptions.LenaException , NotImplementedError

exception LenaRuntimeError

Базовые классы: lena.core.exceptions.LenaException , RuntimeError

Raised when an error does not belong to other categories.

exception LenaStopFill

Базовые классы: lena.core.exceptions.LenaException

Signal that no more fill is accepted.

Analogous to StopIteration, but control flow is reversed.

exception LenaTypeError

Базовые классы: lena.core.exceptions.LenaException , TypeError

exception LenaValueError

Базовые классы: lena.core.exceptions.LenaException , ValueError

exception LenaZeroDivisionError

Базовые классы: lena.core.exceptions.LenaException , ZeroDivisionError

2.3 Flow

Elements:

Cache (filename[, method, protocol]) Cache flow passing through.
Продолжается на следующей странице

40 Глава 2. Reference

Lena Documentation, Выпуск 0.1

Таблица 6 – продолжение с предыдущей страницы
DropContext (*args) Sequence, which transform (data, context) flow so

that only data remains in the inner sequence.
End Stop sequence here.
Print ([before, sep, end, transform]) Print values passing through.

Functions:

get_context (value) Get context from a possible (data, context) pair.
get_data (value) Get data from value (a possible (data, context)

pair).
get_data_context (value) Get (data, context) from value (a possible (data,

context) pair).
seq_map (seq, container[, one_result]) Map Lena Sequence seq to the container.

Group plots:

GroupBy (group_by) Group values.
GroupPlots (group_by, select[, transform, . . .]) Group several plots.
GroupScale (scale_to[, allow_zero_scale, . . .]) Scale a group of data.
Not (selector) Negate a selector.
Selector (selector) Determine whether an item should be selected.

Iterators:

Chain (*iterables) Chain generators.
CountFrom ([start, step]) Generate numbers from start to infinity, with step

between values.
ISlice (*args) Slice iterable from start to stop with step.

Split into bins:

SplitIntoBins (seq, arg_func, edges[, transform]) Split analysis into bins.

2.3.1 Elements

Elements form Lena sequences. This group contains miscellaneous elements, which didn’t fit other categories.

class Cache(filename, method=’cPickle’, protocol=2)
Cache flow passing through.

On the first run, dump all flow to file (and yield the flow unaltered). On subsequent runs, load all flow
from that file in the original order.

Example:

s = Source(
ReadFiles(),
ReadEvents(),
MakeHistograms(),
Cache("histograms.pkl"),
MakeStats(),

(continues on next page)

2.3. Flow 41

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

Cache("stats.pkl"),
)

If stats.pkl exists, Cache will read data flow from that file and no other processing will be done. If
the stats.pkl cache doesn’t exist, but the cache for histograms exist, it will be used and no previous
processing (from ReadFiles to MakeHistograms) will occur. If both caches are not filled yet, processing
will run as usually.

Only pickleable objects can be cached (otherwise a pickle.PickleError is raised).

Предупреждение: The pickle module is not secure against erroneous or maliciously constructed
data. Never unpickle data from an untrusted source.

filename is the name of file where to store the cache. You can give it .pkl extension.

method can be pickle or cPickle (faster pickle). For Python3 they are same.

protocol is pickle protocol. Version 2 is the highest supported by Python 2. Version 0 is «human-
readable» (as noted in the documentation). 3 is recommended if compatibility between Python 3
versions is needed. 4 was added in Python 3.4. It adds support for very large objects, pickling more
kinds of objects, and some data format optimizations.

static alter_sequence(seq)
If the Sequence seq contains a Cache , which has an up-to-date cache, a Source is built based on
the flattened seq and returned. Otherwise the seq is returned unchanged.

cache_exists()
Return True if file with cache exists and is readable.

drop_cache()
Remove file with cache if that exists, pass otherwise.

If cache exists and is readable, but could not be deleted, LenaEnvironmentError is raised.

run(flow)
Load cache or fill it.

If we can read filename, load flow from there. Otherwise use the incoming flow and fill the cache.
All loaded or passing items are yielded.

class DropContext(*args)
Sequence, which transform (data, context) flow so that only data remains in the inner sequence. Context
is restored outside DropContext.

DropContext works for most simple cases as a Sequence, but may not work in more advanced
circumstances. For example, since DropContext is not transparent, Split can’t judge whether it has a
FillCompute element inside, and this may lead to errors in the analysis. It is recommended to provide
context when possible.

*args will form a Sequence.

run(flow)
Run the sequence without context, and generate output flow restoring the context before
DropContext.

If the sequence adds a context, the returned context is updated with that.

class End
Stop sequence here.

42 Глава 2. Reference

Lena Documentation, Выпуск 0.1

run(flow)
Exhaust all preceding flow and stop iteration (yield nothing to the following flow).

class Print(before=”, sep=”, end=’n’, transform=None)
Print values passing through.

before is a string appended before the first element in the item (which may be a container).

sep separates elements, end is appended after the last element.

transform is a function which transforms passing items (for example, it can select its specific fields).

2.3.2 Functions

Functions to deal with data and context, and seq_map() .

A value is considered a (data, context) pair, if it is a tuple of length 2, and the second element is a dictionary
or its subclass.

get_context(value)
Get context from a possible (data, context) pair.

If context is not found, return an empty dictionary.

get_data(value)
Get data from value (a possible (data, context) pair).

If context is not found, return value.

get_data_context(value)
Get (data, context) from value (a possible (data, context) pair).

If context is not found, (value, {}) is returned.

Since get_data() and get_context() both check whether context is present, this function may be
slightly more efficient and compact than the other two.

seq_map(seq, container, one_result=True)
Map Lena Sequence seq to the container.

For each value from the container, calculate seq.run([value]). This can be a list or a single value. If
one_result is True, the result must be a single value. In this case, if results contain less than or more
than one element, LenaValueError is raised.

The list of results (lists or single values) is returned. The results are in the same order as read from
the container.

2.3.3 Group plots

Group several plots into one.

Since data can be produced in different places, several classes are needed to support this. First, the plots
of interest must be selected (for example, one-dimensional histograms). This is done by Selector . Selected
plots must be grouped. For example, we may want to plot data x versus Monte-Carlo x, but not data x vs
data y. Data is grouped by GroupBy . To preserve the group, we can’t yield its members to the following
elements, but have to transform the plots inside GroupPlots . We can also scale (normalize) all plots to one
using GroupScale .

class GroupBy(group_by)
Group values.

2.3. Flow 43

Lena Documentation, Выпуск 0.1

Data is added during update() . Groups dictionary is available as groups attribute. groups is a
mapping of keys (defined by group_by) to lists of items with the same key.

group_by is a function, which returns distinct hashable results for items from different groups. It can
be a dot-separated string, which corresponds to a subcontext (see context.get_recursively).

If group_by is not a callable or a string, LenaTypeError is raised.

clear()
Remove all groups.

update(val)
Find a group for val and add it there.

A group key is calculated by group_by. If no such key exists, a new group is created.

class GroupPlots(group_by, select, transform=(), scale=None, yield_selected=False)
Group several plots.

Plots to be grouped are chosen by select, which acts as a boolean function. If select is not a Selector ,
it is converted to that class. Use Selector for more options.

Plots are grouped by group_by, which returns different keys for different groups. If it is not an instance
of GroupBy , it is converted to that class. Use GroupBy for more options.

scale is a number or a string. A number means the scale, to which plots must be normalized. A string is
a name of the plot to which other plots must be normalized. If scale is not an instance of GroupScale , it
is converted to that class. If a plot could not be rescaled, LenaValueError is raised. For more options,
use GroupScale .

transform is a sequence, which processes individual plots before yielding. For example, set
transform=(ToCSV(), writer). transform is called after scale.

yield_selected defines whether selected items should be yielded during run() like other items (by
default not). Use it to have both single and combined plots.

run(flow)
Run the flow and yield final groups.

Each item of the flow is checked with the selector. If it is selected, it is added to groups. Otherwise,
it is yielded.

After the flow is finished, groups are yielded. Groups are lists of items, which have same keys
returned from group_by. Each group’s context (including empty one) is inserted into a list in
context.group. The resulting context is updated with the intersection of groups“ contexts.

If scale was set, plots are normalized to the given value or plot. If that plot was not selected (is
missing in the captured group) or its norm could not be calculated, LenaValueError is raised.

class GroupScale(scale_to, allow_zero_scale=False, allow_unknown_scale=False)
Scale a group of data.

scale_to defines the method of scaling. If a number is given, group items are scaled to that. Otherwise
it is converted to a Selector , which must return a unique item from the group. Group items will be
scaled to the scale of that item.

By default, attempts to rescale a structure with unknown or zero scale raise an error. If
allow_zero_scale and allow_unknown_scale are set to True, the corresponding errors are ignored
and the structure remains unscaled.

scale(group)
Scale group and return a rescaled group as a list.

44 Глава 2. Reference

Lena Documentation, Выпуск 0.1

The group can contain (structure, context) pairs. The original group is unchanged as long as
structures“ scale method returns a new structure (default for Lena histograms and graphs).

If any item could not be rescaled and options were not set to ignore that, LenaValueError is
raised.

class Not(selector)

Базовые классы: lena.flow.selectors.Selector

Negate a selector.

selector will initialize a Selector .

__call__(value)
Negate the result of the initialized selector.

This is a complete negation (including the case of an error encountered in the selector).
For example, if the selector is variable.name, and value’s context contains no «variable»,
Not(«variable.name»)(value) will be True.

class Selector(selector)
Determine whether an item should be selected.

Generally, selected means the result is convertible to True, but other values can be used as well.

The usage of selector depends on its type.

If selector is a class, __call__() checks that data part of the value is subclassed from that.

A callable is used as is.

A string means that value’s context must conform to that (as in context.contains).

selector can be a container. In this case its items are converted to selectors. If selector is a list, the
result is or applied to results of each item. If it is a tuple, boolean and is applied to the results.

If incorrect arguments are provided, LenaTypeError is raised.

__call__(value)
Check whether value is selected.

If an exception occurs, the result is False. Thus it is safe to use non-existing attributes or arbitrary
contexts.

2.3.4 Iterators

Adapters to iterators from itertools.

class Chain(*iterables)
Chain generators.

Chain can be used as a Source to generate data.

Example:

>>> c = lena.flow.Chain([1, 2, 3], ['a', 'b'])
>>> list(c())
[1, 2, 3, 'a', 'b']

iterables will be chained during __call__(), that is after the first one is exhausted, the second is
called, etc.

2.3. Flow 45

Lena Documentation, Выпуск 0.1

__call__()
Generate values from chained iterables.

class CountFrom(start=0, step=1)
Generate numbers from start to infinity, with step between values.

Similar to itertools.count().

__call__()
Yield values from start to infinity with step.

class ISlice(*args)
Slice iterable from start to stop with step.

Initialization:

ISlice (stop)

ISlice (start, stop [, step])

Similar to itertools.islice() or range().

fill_into(element, value)
Fill element with value.

Element must have a fill(value) method.

run(flow)
Yield values from start to stop with step.

2.3.5 Split into bins

Split analysis on groups set by bins.

class ReduceBinContent(select, transform, drop_bins_context=True)
Transform bin content of histograms.

This class is used when histogram bins contain complex structures. For example, in order to plot
a histogram with a 3-dimensional vector in each bin, we shall create 3 histograms corresponding to
vector’s components.

Select determines which types should be transformed. The types must be given in a list (not a tuple)
or as a general Selector . Example: select=[lena.math.vector3, list].

transform is a Sequence or element applied to bin contents. If transform is not a Sequence or an
element with run method, it is converted to a Sequence . Example: transform=Split([X(), Y(),
Z()]) (provided that you have X, Y, Z variables).

ReduceBinContent creates histograms, which may be plotted, that is bins contain only data without
context. By default, context of all bins except one is not used. If drop_bins_context is False, a
histogram of bin context is added to context.

In case of wrong arguments, LenaTypeError is raised.

run(flow)
Transform histograms from flow.

Not selected values pass unchanged.

Context is updated with variable, histogram and bin_content. variable» and *histogram copy
context from split_into_bins (if present there). bin_content includes context for example bin in
«example_bin» and (optionally) for all bins in «all_bins».

46 Глава 2. Reference

Lena Documentation, Выпуск 0.1

class SplitIntoBins(seq, arg_func, edges, transform=None)
Split analysis into bins.

seq is a FillComputeSeq sequence, which corresponds to the analysis being compared for different
bins. It can be a tuple containing a FillCompute element. Deep copy of seq will be used to produce
each bin’s content.

arg_func is a function which takes data and returns argument value used to compute the bin index. A
Variable must be provided. Example of a two-dimensional function: arg_func = lena.variables.
Variable("xy", lambda event: (event.x, event.y)).

edges is a sequence of arrays containing monotonically increasing bin edges along each dimension.
Example: edges = lena.math.mesh((0, 1), 10).

transform is a Sequence , which is applied to results. The final histogram may contain vectors,
histograms and any other data the analysis produced. To be able to plot them, transform can extract
vector components or do other work to simplify structures. By default, transform is TransformBins .
Pass an empty tuple to disable it.

Attributes: bins, edges.

If edges are not increasing, exceptions.LenaValueError is raised. In case of other argument
initialization problems, exceptions.LenaTypeError is raised.

compute()
Yield a (Histogram, context) for compute() for each bin.

Histogram is created from edges and bins taken from compute() for bins. Context is preserved
in histogram bins.

SplitIntoBins context is added to context.split_into_bins as histogram (corresponding to edges)
and variable (corresponding to arg_func) subcontexts.

In Python 3 the minimum number of compute() among all bins is used. In Python 2, if some bin
is exhausted before the others, its content will be filled with None.

fill(val)
Fill the cell corresponding to arg_func(val) with val.

Values outside of edges range are ignored.

class TransformBins(create_edges_str=None)
Transform bins into a flattened sequence.

create_edges_str is a callable, which creates a string from bin’s edges and coordinate names and adds
that to context. It is passed parameters (edges, var_context), where var_context is Variable context
containing variable names (it can be a single Variable or Combine).

By default, it is cell_to_string() .

If create_edges_str is not callable, LenaTypeError is raised.

cell_to_string(cell_edges, var_context=None, coord_names=None,
coord_fmt=’{}_lte_{}_lt_{}’, coord_join=’_’, reverse=False)

Transform cell edges into a string.

cell_edges is a tuple of pairs (lower bound, upper bound) for each coordinate.

coord_names is a list of coordinates names.

coord_fmt is a string, which defines how to format individual coordinates.

coord_join is a string, which joins coordinate pairs.

If reverse is True, coordinates are joined in reverse order.

2.3. Flow 47

Lena Documentation, Выпуск 0.1

get_example_bin(struct)
Return bin with zero index on each axis of the histogram bins.

For example, if the histogram is two-dimensional, return hist[0][0].

struct can be a Histogram or an array of bins.

2.4 Math

Functions of multidimensional arguments:

flatten (array) Flatten an array of arbitrary dimension.
mesh (ranges, nbins) Generate equally spaced mesh of nbins cells in the

given range.
md_map (f, array) Multidimensional map.
refine_mesh (arr, refinement) Refine (subdivide) one-dimensional mesh arr.

Functions of scalar and multidimensional arguments:

clip (a, interval) Clip (limit) the value.
isclose (a, b[, rel_tol, abs_tol]) Return True if a and b are approximately equal,

and False otherwise.

Elements:

Mean ([start, pass_on_empty]) Calculate mean (average) of input values.
Sum ([start]) Calculate sum of input values.

3-dimensional vector:

vector3 (v) 3-dimensional vector with Cartesian and spherical
coordinates.

2.4.1 Functions of multidimensional arguments

flatten(array)
Flatten an array of arbitrary dimension.

array must be list or a tuple (can be nested). Depth-first flattening is used.

Return an iterator over the flattened array.

Examples:

>>> arr = [1, 2, 3]
>>> list(flatten(arr)) == arr
True
>>> arr = [[1, 2, 3, [4]], 5, [[6]], 7]
>>> list(flatten(arr))
[1, 2, 3, 4, 5, 6, 7]
>>> arr = [[1, 2, [3], 4], 5, [[6]], 7]

(continues on next page)

48 Глава 2. Reference

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

>>> list(flatten(arr))
[1, 2, 3, 4, 5, 6, 7]

mesh(ranges, nbins)
Generate equally spaced mesh of nbins cells in the given range.

Параметры

• ranges – a pair of (min, max) values for 1-dimensional range, or a list of ranges in
corresponding dimensions.

• nbins – number of bins for 1-dimensional range, or a list of number of bins in
corresponding dimensions.

>>> from lena.math import mesh
>>> mesh((0, 1), 2)
[0, 0.5, 1]
>>> mesh(((0, 1), (10, 12)), (1, 2))
[[0, 1], [10, 11.0, 12]]

Note that because of rounding errors two meshes should not be naively compared, they will probably
appear different. One should use isclose for comparison.

>>> from lena.math import isclose
>>> isclose(mesh((0, 1), 10),
... [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
True

md_map(f, array)
Multidimensional map.

Return function f mapped to contents of a multidimensional array. f is a function of one argument.

Array must be a list of (possibly nested) lists. Its contents remain unchanged. Returned array has same
dimensions as the initial one. If array is not a list, LenaTypeError is raised.

>>> from lena.math import md_map
>>> arr = [-1, 1, 0]
>>> md_map(abs, arr)
[1, 1, 0]
>>> arr = [[0, -1], [2, 3]]
>>> md_map(abs, arr)
[[0, 1], [2, 3]]

refine_mesh(arr, refinement)
Refine (subdivide) one-dimensional mesh arr.

refinement is the number of subdivisions. It must be not less than 1.

Note that to create a new mesh may be faster. Use this function only for convenience.

2.4.2 Functions of scalar and multidimensional arguments

clip(a, interval)
Clip (limit) the value.

2.4. Math 49

Lena Documentation, Выпуск 0.1

Given an interval (a_min, a_max), values of a outside the interval are clipped to the interval edges.
For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than
1 become 1.

>>> clip(-1, (0, 1))
0
>>> # tuple looks better, but list can be used too
>>> clip(2, [0, 1])
1
>>> clip(0.5, (0, 1))
0.5

If a_min > a_max or if interval has length more than 2, LenaValueError is raised. If interval is not
a container, LenaTypeError is raised.

isclose(a, b, rel_tol=1e-09, abs_tol=0.0)
Return True if a and b are approximately equal, and False otherwise.

rel_tol is the relative tolerance. It is multiplied by the greater of the magnitudes of the two arguments;
as the values get larger, so does the allowed difference between them while still considering them close.

abs_tol is the absolute tolerance. If the difference is less than either of those tolerances, the values are
considered equal.

a and b must be either numbers or lists/tuples of same dimensions (may be nested), or have a method
isclose. Otherwise LenaTypeError is raised. For containers, isclose is called elementwise. If every
corresponding element is close, the containers are close. Dimensions are not checked to be equal.

First, a and b are checked if any of them has isclose method. If a and b both have isclose method,
then they must both return True to be close. Otherwise, if only one of a or b has isclose method, it is
called.

Special values of NaN, inf, and -inf are not supported.

>>> isclose(1, 2)
False
>>> isclose([1, 2, 3], (1, 2., 3))
True

This function for scalar numbers appeared in math module in Python 3.5.

2.4.3 Elements

Elements for mathematical calculations.

class Mean(start=0, pass_on_empty=False)
Calculate mean (average) of input values.

start is the initial value of sum.

If pass_on_empty is True, then if nothing was filled, don’t yield anything. By default it raises an error
(see compute()).

compute()
Calculate mean and yield.

If the current context is not empty, yield (mean, context). Otherwise yield only mean.

If no values were filled (count is zero), mean can’t be calculated and LenaZeroDivisionError is
raised. This can be changed to yielding nothing if pass_on_empty was initialized to True.

50 Глава 2. Reference

Lena Documentation, Выпуск 0.1

fill(value)
Fill self with value.

The value can be a (data, context) pair. The last context value (if missing, it is considered empty)
is saved for output.

reset()
Reset sum, count and context.

Sum is reset to start value, count to zero and context to {}.

class Sum(start=0)
Calculate sum of input values.

start is the initial value of sum.

compute()
Calculate the sum and yield.

If the current context is not empty, yield (sum, context). Otherwise yield only sum.

fill(value)
Fill self with value.

The value can be a (data, context) pair. The last context value (considered empty if missing) sets
the current context.

reset()
Reset sum and context.

Sum is reset to start value and context to {}.

2.4.4 3-dimensional vector

vector3 is a 3-dimensional vector with float coordinates. It supports spherical coordinates and basic vector
operations.

Initialization, vector addition and scalar multiplication create new vectors:

>>> v1 = vector3([0, 1, 2])
>>> v2 = vector3([3, 4, 5])
>>> v1 + v2
vector3([3.0, 5.0, 7.0])
>>> v1 - v2
vector3([-3.0, -3.0, -3.0])
>>> 3 * v1
vector3([0.0, 3.0, 6.0])
>>> v1 * 3
vector3([0.0, 3.0, 6.0])

Vector attributes can be set and read. Vectors can be tested for exact or approximate equality with == and
isclose method.

>>> v2.z = 0
>>> v2
vector3([3.0, 4.0, 0.0])
>>> v2.r = 10
>>> v2 == vector3([6, 8, 0])
True
>>> v2.theta = 0

(continues on next page)

2.4. Math 51

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

>>> v2.isclose(vector3([0, 0, 10]))
True
>>> from math import pi
>>> v2.phi = 0
>>> v2.theta = pi/2.
>>> v2.isclose(vector3([10, 0, 0]))
True

class vector3(v)
3-dimensional vector with Cartesian and spherical coordinates.

Create vector3 from Cartesian coordinates.

v should be a container of size 3 (will be transformed to a list of floats).

Attributes

vector3 has usual vector attributes: x, y, z and spherical coordinates r, phi, theta.

They are connected through this formula:

𝑥 = 𝑟 * cos(𝜑) * sin(𝜃),
𝑦 = 𝑟 * sin(𝜑) * sin(𝜃),
𝑧 = 𝑟 * cos(𝜃),

𝜑 ∈ [0, 2𝜋], 𝜃 ∈ [0, 𝜋].

𝜑 and 𝜑+ 2𝜋 are equal.

Cartesian coordinates can be obtained and set through indices starting from 0 (v.x = v[0]). In this
respect, vector3 behaves as a container of length 3.

Only Cartesian coordinates are stored internally (spherical coordinates are recomputed each time).

Attributes can be got and set using subscript or a function set*, get*. For example:

>>> v = vector3([1, 0, 0])
>>> v.x = 0
>>> x = v.getx()
>>> v.setx(x+1)
>>> v
vector3([1.0, 0.0, 0.0])

𝑟2 and cos 𝜃 can be obtained with methods getr2() and getcostheta().

Comparisons

For elementwise comparison of two vectors one can use „==“ and „!=“ operators. Because of rounding
errors, this can often show two same vectors as different. In general, it is recommended to use
approximate comparison with isclose method.

Comparisons like „>“, „<=“ are all prohibited: if one tries to use these operators, LenaTypeError is
raised.

Truth testing

vector3 is non-zero if its magnitude (r) is not 0.

Vector operations

3-dimensional vectors can be added and subtracted, multiplied or divided by a scalar. Multiplication
by a scalar can be written from any side of the vector (c*v or v*c). A vector can also be negated (-v).

52 Глава 2. Reference

Lena Documentation, Выпуск 0.1

For other vector operations see methods below.

classmethod fromspherical(r, phi, theta)
Construct vector3 from spherical coordinates.

r is magnitude, phi is azimuth angle from 0 to 2 * 𝜋, theta is polar angle from 0 (z = 1) to 𝜋 (z
= -1).

>>> from math import pi
>>> vector3.fromspherical(1, 0, 0)
vector3([0.0, 0.0, 1.0])
>>> vector3.fromspherical(1, 0, pi).isclose(vector3([0, 0, -1]))
True
>>> vector3([1, 0, 0]).isclose(vector3.fromspherical(1, 0, pi/2))
True
>>> vector3.fromspherical(1, pi, 0).isclose(vector3([0.0, 0.0, 1.0]))
True
>>> vector3.fromspherical(1, pi/2, pi/2).isclose(vector3([0.0, 1.0, 0.0]))
True

angle(B)
The angle between self and B, in radians.

>>> v1 = vector3([0, 3, 4])
>>> v2 = vector3([0, 3, 4])
>>> v1.angle(v2)
0.0
>>> v2 = vector3([0, -4, 3])
>>> from math import degrees
>>> degrees(v1.angle(v2))
90.0
>>> v2 = vector3([0, -30, -40])
>>> degrees(v1.angle(v2))
180.0

cosine(B)
Cosine of the angle between self and B.

>>> v1 = vector3([0, 3, 4])
>>> v2 = vector3([0, 3, 4])
>>> v1.cosine(v2)
1.0
>>> v2 = vector3([0, -4, 3])
>>> v1.cosine(v2)
0.0
>>> v2 = vector3([0, -30, -40])
>>> v1.cosine(v2)
-1.0

cross(B)
The cross product between self and B, 𝐴×𝐵.

>>> v1 = vector3([0, 3, 4])
>>> v2 = vector3([0, 1, 0])
>>> v1.cross(v2)
vector3([-4.0, 0.0, 0.0])

dot(B)
The scalar product between self and B, 𝐴 ·𝐵.

2.4. Math 53

Lena Documentation, Выпуск 0.1

classmethod fromspherical(r, phi, theta)
Construct vector3 from spherical coordinates.

r is magnitude, phi is azimuth angle from 0 to 2 * 𝜋, theta is polar angle from 0 (z = 1) to 𝜋 (z
= -1).

>>> from math import pi
>>> vector3.fromspherical(1, 0, 0)
vector3([0.0, 0.0, 1.0])
>>> vector3.fromspherical(1, 0, pi).isclose(vector3([0, 0, -1]))
True
>>> vector3([1, 0, 0]).isclose(vector3.fromspherical(1, 0, pi/2))
True
>>> vector3.fromspherical(1, pi, 0).isclose(vector3([0.0, 0.0, 1.0]))
True
>>> vector3.fromspherical(1, pi/2, pi/2).isclose(vector3([0.0, 1.0, 0.0]))
True

isclose(B, rel_tol=1e-09, abs_tol=0.0)
Test whether two vectors are approximately equal.

Parameter semantics is the same as for the general isclose .

>>> v1 = vector3([0, 1, 2])
>>> v1.isclose(vector3([1e-11, 1, 2]))
True

norm()
𝐴/|𝐴|, a unit vector in the direction of self.

>>> v1 = vector3([0, 3, 4])
>>> n1 = v1.norm()
>>> v1n = vector3([0, 0.6, 0.8])
>>> (n1 - v1n)._mag() < 1e-6
True

proj(B)
The vector projection of self along B.

A.proj(B) = (𝐴 · 𝑛𝑜𝑟𝑚(𝐵))𝑛𝑜𝑟𝑚(𝐵).

>>> v1 = vector3([0, 3, 4])
>>> v2 = vector3([0, 2, 0])
>>> v1.proj(v2)
vector3([0.0, 3.0, 0.0])

rotate(theta, B)
Rotate self around B through angle theta.

From the position where B points towards us, the rotation is counterclockwise (the right hand
rule).

>>> v1 = vector3([1, 1, 1.0])
>>> v2 = vector3([0, 1, 0.0])
>>> from math import pi
>>> vrot = v1.rotate(pi/2, v2)
>>> vrot.isclose(vector3([1.0, 1.0, -1.0]))
True

54 Глава 2. Reference

Lena Documentation, Выпуск 0.1

scalar_proj(B)
The scalar projection of self along B.

A.scalar_proj(B) = 𝐴 · 𝑛𝑜𝑟𝑚(𝐵).

>>> v1 = vector3([0, 3, 4])
>>> v2 = vector3([0, 2, 0])
>>> v1.scalar_proj(v2)
3.0

2.5 Output

Output:

MakeFilename ([filename, dirname, fileext, . . .]) Make file name, file extension and directory name.
PDFToPNG ([format, timeoutsec]) Convert PDF to image format (by default PNG).
ToCSV ([separator, header, duplicate_last_bin]) Convert data to CSV text.
Writer ([output_directory, output_filename]) Write text data to filesystem.

LaTeX utilities:

LaTeXToPDF ([verbose, create_command]) Run pdflatex binary for LaTeX files.
RenderLaTeX ([select_template, . . .]) Create LaTeX from templates and data.

2.5.1 Output

class MakeFilename(filename=None, dirname=None, fileext=None, overwrite=False)
Make file name, file extension and directory name.

A single argument can be a string, which will be used as a file name without extension (but it can
contain a relative path). The string can contain arguments enclosed in double braces. These arguments
will be filled from context during __call__() . Example:

MakeFilename(«{{variable.type}}/{{variable.name}}»)

By default, values with context.output already containing filename are not updated (returned
unchanged). This can be changed using a keyword argument overwrite. If context doesn’t contain
all necessary keys for formatting, it will not be updated. For more options, use lena.context.
UpdateContext .

Other allowed keywords are filename, dirname, fileext. Their value must be a string, otherwise
LenaTypeError is raised. At least one of the must be present, or LenaTypeError will be raised.
If a simple check finds unbalanced or single braces instead of double, LenaValueError is raised.

__call__(value)
Add output keys to the value’s context.

filename, dirname, fileext, if initialized, set respectively context.output.{filename,dirname,fileext}.
Only those values are transformed that have no corresponding keys (filename, fileext or dirname)
in context.output and for which the current context can be formatted (contains all necessary keys
for any of the format strings).

class PDFToPNG(format=’png’, timeoutsec=60)
Convert PDF to image format (by default PNG).

2.5. Output 55

Lena Documentation, Выпуск 0.1

Initialize output format.

timeoutsec is time (in seconds) for subprocess timeout (used only in Python 3). If the timeout expires,
the child process will be killed and waited for. The TimeoutExpired exception will be re-raised after
the child process has terminated.

This class uses pdftoppm binary internally. pdftoppm can be given other output formats as an option
(see man pdftoppm), for example jpeg or tiff.

run(flow)
Convert PDF files to format.

PDF files are recognized via context.output.filetype. Their paths are assumed to be data part of
the value (may contain trailing «.pdf»).

Data yielded is the resulting file name. Context is updated with filetype = format.

Other values are passed unchanged.

class ToCSV(separator=’, ’, header=None, duplicate_last_bin=True)
Convert data to CSV text.

These objects are converted:

• Histogram (implemented only for 1- and 2-dimensional histograms).

• any object (including Graph) with to_csv method.

separator delimits values in the output text,

header is a string which becomes the first line of the output,

If duplicate_last_bin is True, contents of the last bin will be written in the end twice. This may be
useful for graphical representation: if last bin is from 9 to 10, then the plot may end on 9, while this
parameter allows to write bin content at 10, creating the last horizontal step.

run(flow)
Convert values from flow to CSV text.

Context.output is updated with {«filetype»: «csv»}. All not converted data is yielded unchanged.

If data has to_csv method, it must accept keyword arguments separator and header and return
text.

If context.output.to_csv is False, the value is skipped.

Data is yielded as a whole CSV block. To generate CSV line by line, use hist1d_to_csv() and
hist2d_to_csv() .

hist1d_to_csv(hist, header=None, separator=’, ’, duplicate_last_bin=True)
Yield CSV-formatted strings for a one-dimensional histogram.

hist2d_to_csv(hist, header=None, separator=’, ’, duplicate_last_bin=True)
Yield CSV-formatted strings for a two-dimensional histogram.

class Writer(output_directory=”, output_filename=’output’)
Write text data to filesystem.

output_directory is the base output directory. It can be further appended by the incoming data. Non-
existing directories are created.

output_filename is the name for unnamed data. Use it to write only one file.

If no arguments are given, the default is to write to «output.txt» in the current directory (rewritten
for every new value) (unless different extensions are provided through the context). It is recommended

56 Глава 2. Reference

Lena Documentation, Выпуск 0.1

to create filename explicitly using MakeFilename . The default writer’s output file can be useful in case
of errors, when explicit file name didn’t work.

run(flow)
Write incoming data to file system.

Only strings (and unicode in Python 2) are written. To be written, data must have «output»
dictionary in context and context[«output»][«writer»] not set to False. Other values pass
unchanged.

Full name of the file to be written (filepath) has the form
self.output_directory/dirname/filename.fileext, where dirname, filename and file extension
are searched in context[«output»]. If filename is missing, Writer’s default filename is used. If
fileext is missing, then filetype is used; if it is also absent, the default file extension is «txt». It is
recommended to provide only fileext in context, unless it differs with filetype.

File name with full path is yielded as data. Context.output is updated with fileext and filename
(in case they were not present), and filepath, where filename is its base part (without output
directory and extension) and filepath is the complete path.

If context.output.filename is present, but empty, LenaRuntimeError is raised.

2.5.2 LaTeX

class LaTeXToPDF(verbose=1, create_command=None)
Run pdflatex binary for LaTeX files.

It runs in parallel (separate process is spawned for each job) and non-interactively.

Initialize object.

verbose = 0 means no output messages. 1 prints pdflatex error messages. More than 1 prints pdflatex
stdout.

If you need to run pdflatex (or other executable) with different parameters, provide its command.

create_command is a function which accepts texfile_name, outfilename, output_directory, context (in
this order) and returns a list made of the command and its arguments.

Default command is:

[«pdflatex», «-halt-on-error», «-interaction», «batchmode», «-output-directory»,
output_directory, texfile_name]

run(flow)
Convert all incoming LaTeX files to pdf.

class RenderLaTeX(select_template=”, template_path=’.’, select_data=None)
Create LaTeX from templates and data.

select_template is a string or a callable. If a string, it is the name of the template to be used (unless
context.output.template overwrites that). If select_template is a callable, it must accept a value from
the flow and return template name. If select_template is an empty string (default) and no template
could be found in the context, LenaRuntimeError is raised.

template_path is the path for templates (used in jinja2.FileSystemLoader). By default, it is the current
directory.

select_data is a callable to choose data to be rendered. It should accept a value from flow and return
boolean. If it is not provided, by default CSV files are selected.

2.5. Output 57

Lena Documentation, Выпуск 0.1

run(flow)
Render values from flow to LaTeX.

If no select_data was initialized, values with context.output.filetype equal to «csv» are selected by
default.

Rendered LaTeX text is yielded in the data part of the tuple (no write to filesystem occurs).
context.output.filetype updates to «tex».

Not selected values pass unchanged.

2.6 Structures

Histograms:

Histogram (edges[, bins, make_bins, . . .]) Multidimensional histogram.
NumpyHistogram

Graph:

Graph ([points, context, scale, sort]) Function at given coordinates (arbitraty
dimensions).

Histogram functions:

HistCell A namedtuple with fields edges, bin, index.
check_edges_increasing (edges) Assure that multidimensional edges are increasing.
get_bin_edges (index, edges) Return edges of the bin for the given edges of a

histogram.
get_bin_on_value_1d (val, arr) Return index for value in one-dimensional array.
get_bin_on_value (arg, edges) Get the bin index for arg in a multidimensional

array edges.
get_bin_on_index (index, bins) Return bin corresponding to multidimensional

index.
iter_bins (bins) Iterate on bins.
iter_cells (hist[, ranges, coord_ranges]) Iterate cells of a histogram hist, possibly in a

subrange.
init_bins (edges[, value, deepcopy]) Initialize cells of the form edges with the given

value.
integral (bins, edges) Compute integral (scale for a histogram).
make_hist_context (hist, context) Update context with the context of a Histogram

hist.
unify_1_md (bins, edges) Unify 1- and multidimensional bins and edges.

2.6.1 Histograms

class Histogram(edges, bins=None, make_bins=None, initial_value=0, context=None)
Multidimensional histogram.

Arbitrary dimension, variable bin size and a weight function during fill() are supported. Lower bin
edge is included, upper edge is excluded. Underflow and overflow values are skipped. Bin content type

58 Глава 2. Reference

Lena Documentation, Выпуск 0.1

is defined during the initialization.

Examples:

>>> # two-dimensional histogram
>>> hist = Histogram([[0, 1, 2], [0, 1, 2]])
>>> hist.fill([0, 1])
>>> hist.bins
[[0, 1], [0, 0]]
>>> values = [[0, 0], [1, 0], [1, 1]]
>>> # use fill method
>>> for v in values:
... hist.fill(v)
>>> hist.bins
[[1, 1], [1, 1]]
>>> # use as a Lena FillCompute element
>>> # (yielded only after fully computed)
>>> hseq = lena.core.Sequence(hist)
>>> h, context = next(hseq.run(values))
>>> print(h.bins)
[[2, 1], [2, 2]]

edges is a sequence of one-dimensional arrays, each containing strictly increasing bin edges. If edges“
subarrays are not increasing or any of them has length less than 2, LenaValueError is raised.

Histogram bins by default are initialized with initial_value. It can be any object, which supports
addition of a weight during fill (but that is not necessary if you don’t plan to fill the histogram). If the
initial_value is compound and requires special copying, create initial bins yourself (see init_bins()).

Histogram may be created from existing bins and edges. In this case a simple check of the shape of
bins is done. If that is incorrect, LenaValueError is raised.

make_bins is a function without arguments that creates new bins (it will be called during __init__()
and reset()). initial_value in this case is ignored, but bin check is being done. If both bins and
make_bins are provided, LenaTypeError is raised.

Attributes

Histogram.edges is a list of edges on each dimension. Edges mark the borders of the bin. Edges along
each dimension is a one-dimensional list, and the multidimensional bin is the result of all intersections of
one-dimensional edges. For example, 3-dimensional histogram has edges of the form [x_edges, y_edges,
z_edges], and the 0th bin has the borders ((x[0], x[1]), (y[0], y[1]), (z[0], z[1])).

Index in the edges is a tuple, where a given position corresponds to a dimension, and the content at
that position to the bin along that dimension. For example, index (0, 1, 3) corresponds to the bin with
lower edges (x[0], y[1], z[3]).

Histogram.bins is a list of nested lists. Same index as for edges can be used to get bin content: bin
at (0, 1, 3) can be obtained as bins[0][1][3]. Most nested arrays correspond to highest (further from x)
coordinates. For example, for a 3-dimensional histogram bins equal to [[[1, 1], [0, 0]], [[0, 0], [0, 0]]]
mean that the only filled bins are those where x and y indices are 0, and z index is 0 and 1.

dim is the dimension of a histogram (length of its edges for a multidimensional histogram).

Programmer’s note

one- and multidimensional histograms have different bins and edges format. To be unified, 1-
dimensional edges should be nested in a list (like [[1, 2, 3]]). Instead, they are simply the x-edges

2.6. Structures 59

Lena Documentation, Выпуск 0.1

list, because it is more intuitive and one-dimensional histograms are used more often. To unify the
interface for bins and edges in your code, use unify_1_md() function.

compute()
Yield this histogram with context.

fill(value, weight=1)
Fill histogram with value with the given weight.

Value can be a (data, context) pair. Values outside the histogram edges are ignored.

reset()
Reset the histogram.

Current context is reset to an empty dict. Bins are reinitialized with the initial_value or with
make_bins (depending on the initialization).

If bins were set explicitly during the initialization, LenaRuntimeError is raised.

scale(other=None, recompute=False)
Compute or set scale (integral of the histogram).

If other is None, return scale of this histogram. If its scale was not computed before, it is computed
and stored for subsequent use (unless explicitly asked to recompute).

If a float other is provided, rescale to other. A new histogram with the scale equal to other is
returned, the original histogram remains unchanged.

Histograms with scale equal to zero can’t be rescaled. LenaValueError is raised if one tries to do
that.

2.6.2 Graph

class Graph(points=None, context=None, scale=None, sort=True)
Function at given coordinates (arbitraty dimensions).

Graph points can be set during the initialization and during fill() . It can be rescaled (producing a
new Graph). A point is a tuple of (coordinate, value), where both coordinate and value can be tuples
of numbers. Coordinate corresponds to a point in N-dimensional space, while value is some function’s
value at this point (the function can take a value in M-dimensional space). Coordinate and value
dimensions must be the same for all points.

One can get graph points as Graph.points attribute. They will be sorted each time before return if
sort was set to True. An attempt to change points (use Graph.points on the left of „=“) will raise
Python’s AttributeError.

points is an array of (coordinate, value) tuples.

context is the same as the most recent context during fill. Use it to provide a context when initializing
a Graph from existing points.

scale sets the scale of the graph. It is used during plotting if rescaling is needed.

Graph coordinates are sorted by default. This is usually needed to plot graphs of functions. If you need
to keep the order of insertion, set sort to False.

By default, sorting is done using standard Python lists and functions. You can disable sort and provide
your own sorting container for points. Some implementations are compared here. Note that a rescaled
graph uses a default list.

60 Глава 2. Reference

http://www.grantjenks.com/docs/sortedcontainers/performance.html

Lena Documentation, Выпуск 0.1

Note that Graph does not reduce data. All filled values will be stored in it. To reduce data, use
histograms.

fill(value)
Fill the graph with value.

Value can be a (data, context) tuple. Data part must be a (coordinates, value) pair, where both
coordinates and value are also tuples. For example, value can contain the principal number and
its precision.

points
Get graph points (read only).

request()
Yield graph with context.

If sort was initialized True, graph points will be sorted.

reset()
Reset points to an empty list and current context to an empty dict.

scale(other=None)
Get or set the scale.

Graph’s scale comes from an external source. For example, if the graph was computed from a
function, this may be its integral passed via context during fill() . Once the scale is set, it
is stored in the graph. If one attempts to use scale which was not set, LenaAttributeError is
raised.

If other is None, return the scale.

If a float other is provided, rescale to other. A new graph with the scale equal to other is
returned, the original one remains unchanged. Note that in this case its points will be a simple
list and new graph sort parameter will be True.

Graphs with scale equal to zero can’t be rescaled. Attempts to do that raise LenaValueError .

to_csv(separator=’, ’, header=None)
Convert graph’s points to CSV.

separator delimits values, default is a comma.

header, if not None, is the first string of the output (new line is added automatically).

Since a graph can be multidimensional, for each point first its coordinate is converted to string
(separated by separator), than each part of its value.

To convert Graph to CSV inside a Lena sequence, use lena.output.ToCSV .

2.6.3 Histogram functions

Functions for histograms.

These functions are used for low-level work with histograms and their contents. They are not needed for
normal usage.

class HistCell
A namedtuple with fields edges, bin, index.

Create new instance of HistCell(edges, bin, index)

2.6. Structures 61

Lena Documentation, Выпуск 0.1

check_edges_increasing(edges)
Assure that multidimensional edges are increasing.

If length of edges or its subarray is less than 2 or if some subarray of edges contains not strictly
increasing values, LenaValueError is raised.

get_bin_edges(index, edges)
Return edges of the bin for the given edges of a histogram.

In one-dimensional case index must be an integer and a tuple of (x_low_edge, x_high_edge) for that
bin is returned.

In a multidimensional case index is a container of numeric indices in each dimension. A list of bin edges
in each dimension is returned.

get_bin_on_index(index, bins)
Return bin corresponding to multidimensional index.

index can be a number or a list/tuple. If index length is less than dimension of bins, a subarray of bins
is returned.

In case of an index error, LenaIndexError is raised.

Example:

>>> from lena.structures import Histogram, get_bin_on_index
>>> hist = Histogram([0, 1], [0])
>>> get_bin_on_index(0, hist.bins)
0
>>> get_bin_on_index((0, 1), [[0, 1], [0, 0]])
1
>>> get_bin_on_index(0, [[0, 1], [0, 0]])
[0, 1]

get_bin_on_value(arg, edges)
Get the bin index for arg in a multidimensional array edges.

arg is a 1-dimensional array of numbers (or a number for 1-dimensional edges), and corresponds to a
point in N-dimensional space.

edges is an array of N-1 dimensional arrays (lists or tuples) of numbers. Each 1-dimensional subarray
consists of increasing numbers.

arg and edges must have the same length (otherwise LenaValueError is raised). arg and edges must
be iterable and support len().

Return list of indices in edges corresponding to arg.

If any coordinate is out of its corresponding edge range, its index will be -1 for underflow or
len(edge)-1 for overflow.

Examples:

>>> from lena.structures import get_bin_on_value
>>> edges = [[1, 2, 3], [1, 3.5]]
>>> get_bin_on_value((1.5, 2), edges)
[0, 0]
>>> get_bin_on_value((1.5, 0), edges)
[0, -1]
>>> # the upper edge is excluded
>>> get_bin_on_value((3, 2), edges)
[2, 0]

(continues on next page)

62 Глава 2. Reference

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

>>> # one-dimensional edges
>>> edges = [1, 2, 3]
>>> get_bin_on_value(2, edges)
[1]

get_bin_on_value_1d(val, arr)
Return index for value in one-dimensional array.

arr must contain strictly increasing values (not necessarily equidistant), it is not checked.

«Linear binary search» is used, that is our array search by default assumes the array to be split on
equidistant steps.

Example:

>>> from lena.structures import get_bin_on_value_1d
>>> arr = [0, 1, 4, 5, 7, 10]
>>> get_bin_on_value_1d(0, arr)
0
>>> get_bin_on_value_1d(4.5, arr)
2
>>> # upper range is excluded
>>> get_bin_on_value_1d(10, arr)
5
>>> # underflow
>>> get_bin_on_value_1d(-10, arr)
-1

hist_to_graph(hist, context, make_graph_value=None, bin_coord=’left’)
Convert a Histogram hist to a Graph .

context becomes graph’s context. For example, it can contain a scale.

make_graph_value is a function to set graph point’s value. By default it is bin content. This option
could be used to create graph error bars. make_graph_value must accept bin content and bin context
as positional arguments.

bin_coord signifies which will be the coordinate of a graph’s point created from histogram’s bin. Can
be «left» (default), «right» and «middle».

Return the resulting graph.

init_bins(edges, value=0, deepcopy=False)
Initialize cells of the form edges with the given value.

Return bins filled with copies of value.

Value must be copyable, usual numbers will suit. If the value is mutable, use deepcopy = True (or the
content of cells will be identical).

Examples:

>>> edges = [[0, 1], [0, 1]]
>>> # one cell
>>> init_bins(edges)
[[0]]
>>> # no need to use floats,
>>> # because integers will automatically be cast to floats
>>> # when used together
>>> init_bins(edges, 0.0)

(continues on next page)

2.6. Structures 63

Lena Documentation, Выпуск 0.1

(продолжение с предыдущей страницы)

[[0.0]]
>>> init_bins([[0, 1, 2], [0, 1, 2]])
[[0, 0], [0, 0]]
>>> init_bins([0, 1, 2])
[0, 0]

integral(bins, edges)
Compute integral (scale for a histogram).

bins contain values, and edges form the mesh for the integration. Their format is defined in Histogram
description.

iter_bins(bins)
Iterate on bins. Yield (index, bin content).

Edges with higher index are iterated first (that is z, then y, then x for a 3-dimensional histogram).

iter_cells(hist, ranges=None, coord_ranges=None)
Iterate cells of a histogram hist, possibly in a subrange.

For each bin, yield a HistCell containing bin edges, bin content and bin index. The order of iteration
is the same as for iter_bins() .

ranges are the ranges of bin indices to be used for each coordinate (the lower value is included, the
upper value is excluded).

coord_ranges set real coordinate ranges based on histogram edges. Obviously, they can be not exactly
bin edges. If one of the ranges for the given coordinate is outside the histogram edges, then only existing
histogram edges within the range are selected. If the coordinate range is completely outside histogram
edges, nothing is yielded. If a lower or upper coord_range falls within a bin, this bin is yielded. Note
that if a coordinate range falls on a bin edge, the number of generated bins can be unstable because
of limited float precision.

ranges and coord_ranges are tuples of tuples of limits in corresponding dimensions. For one-dimensional
histogram it must be a tuple containing a tuple, for example ((None, None),).

None as an upper or lower range means no limit (((None, None),) is equivalent to ((0, len(bins)),) for
a 1-dimensional histogram).

If a range index is lower than 0 or higher than possible index, LenaValueError is raised. If both
coord_ranges and ranges are provided, LenaTypeError is raised.

make_hist_context(hist, context)
Update context with the context of a Histogram hist.

Deep copy of updated context is returned.

unify_1_md(bins, edges)
Unify 1- and multidimensional bins and edges.

Return a tuple of (bins, edges). Bins and multidimensional edges return unchanged, while one-
dimensional edges are inserted into a list.

2.7 Variables

Variables:

64 Глава 2. Reference

Lena Documentation, Выпуск 0.1

Combine (*args, **kwargs) Combine variables into a tuple.
Compose (*args, **kwargs) Composition of variables.
Variable (name, getter, **kwargs) Function of data with context.

2.7.1 Variables

Variables are functions to transform data and add context.

A variable can represent a particle type, a coordinate, etc. They transform raw input data into Lena data
with context. Variables have name and may have other attributes like LaTeX name, dimension or unit.

Variables can be composed using Compose , which corresponds to function composition.

Variables can be combined into multidimensional variables using Combine .

Examples:

>>> from lena.variables import Variable, Compose
>>> # data is pairs of (positron, neutron) coordinates
>>> data = [((1.05, 0.98, 0.8), (1.1, 1.1, 1.3))]
>>> x = Variable(
... "x", lambda coord: coord[0], type="coordinate"
...)
>>> neutron = Variable(
... "neutron", latex_name="n",
... getter=lambda double_ev: double_ev[1], type="particle"
...)
>>> x_n = Compose(neutron, x)
>>> x_n(data[0])[0]
1.1
>>> x_n(data[0])[1] == {
... 'variable': {
... 'name': 'neutron_x', 'particle': 'neutron',
... 'latex_name': 'x_{n} ', 'coordinate': 'x', 'type': 'coordinate',
... 'compose': {
... 'type': 'particle', 'latex_name': 'n',
... 'name': 'neutron', 'particle': 'neutron'
... },
... }
... }
True

Combine and Compose are subclasses of a Variable .

class Combine(*args, **kwargs)
Combine variables into a tuple.

Combine (var1, var2, . . .)(value) is ((var1.getter(value), var2.getter(value), . . .), context).

args are the variables to be combined.

Keyword arguments are passed to Variable ’s __init__. For example, name is the name of the
combined variable. If not provided, it is its variables“ names joined with „_“.

context.variable is updated with combine, which is a tuple of each variable’s context.

Attributes:

dim is the number of variables.

2.7. Variables 65

Lena Documentation, Выпуск 0.1

All args must be Variables and there must be at least one of them, otherwise LenaTypeError is raised.

__getitem__(index)
Get variable at the given index.

class Compose(*args, **kwargs)
Composition of variables.

args are the variables to be composed.

Keyword arguments:

name is the name of the composed variable. If that is missing, it is composed from variables names
joined with underscore.

latex_name is LaTeX name of the composed variable. If that is missing and if there are only two
variables, it is composed from variables“ names (or their LaTeX names if present) as a subscript in the
reverse order (latex2_{latex1}).

context.variable.compose contains contexts of the composed variables (the first composed variable is
most nested).

If any keyword argument is a callable, it is used to create the corresponding variable attribute. In this
case, all variables must have this attribute, and the callable is applied to the list of these attributes. If
any attribute is missing, LenaAttributeError is raised. This can be used to create composed attributes
other than latex_name.

If there are no variables or if kwargs contain getter, LenaTypeError is raised.

class Variable(name, getter, **kwargs)
Function of data with context.

name is variable’s name.

getter is the python function (not a Variable) that performs the actual transformation of data. It
must accept data and return data without context.

Other variable’s attributes can be passed as keyword arguments. Examples include latex_name, unit
(like cm or keV), range, etc.

type is the type of the variable. It depends on your application, examples are „coordinate“ or
„particle_type“. It has a special meaning: if present, its value is added to variable’s context as a
key with variable’s name (see example for this module). Thus variable type’s data is preserved during
composition of different types.

Attributes

getter is the function that does the actual data transformation.

var_context is the dictionary of attributes of the variable, which is added to context.variable during
__call__() .

All public attributes of a variable can be accessed using dot notation (for example,
var.var_context[«latex_name»] can be simply var.latex_name). AttributeError is raised if the
attribute is missing.

If getter is a Variable or is not callable, LenaTypeError is raised.

__call__(value)
Transform a value.

Data part of the value is transformed by the getter. Context.variable is updated with the context
of this variable (or created if missing).

66 Глава 2. Reference

Lena Documentation, Выпуск 0.1

If context already contained variable, it is preserved as context.variable.compose subcontext.

Return (data, context).

get(key, default=None)
Return the attribute key if present, else default.

key can be a dot-separated string, a list or a dictionary (see context.get_recursively).

If default is not given, it defaults to None, so that this method never raises a KeyError.

2.7. Variables 67

Lena Documentation, Выпуск 0.1

68 Глава 2. Reference

Глава 3

Indices and tables

• genindex

• modindex

• search

69

Lena Documentation, Выпуск 0.1

70 Глава 3. Indices and tables

Глава 4

Установка

4.1 Минимальная

Установите последнюю официальную версию из PyPI:

pip install lena

Базовые модули Lena не имеют зависимостей помимо стандартных библиотек Python.

4.2 Рекомендуемая

pip install lena jinja2

jinja2 используется для создания шаблонов графиков. Также установите следующие программы:

• pdflatex для создания pdf-файлов из LaTeX,

• pgfplots и TikZ для создания графиков в LaTeX,

• pdftoppm для преобразования pdf-файлов в png.

Эти программы можно найти в пакетах вашей операционной системы. Например, в Fedora Core 29
установите их с помощью

dnf install texlive-latex texlive-pgfplots poppler-utils

pdflatex и pgfplots содержатся в стандартном дистрибутиве TeX Live.

4.3 Полная

Эта установка требуется только если вы хотите расширять и разрабатывать Lena. Скачайте полный
репозиторий (с историей) с GitHub и установите все зависимости для разработки:

71

https://www.ctan.org/pkg/texlive

Lena Documentation, Выпуск 0.1

git clone https://github.com/ynikitenko/lena
pip install -r lena/requirements.txt

Установите программы из предыдущего подраздела и измените PYTHONPATH как показано в следу-
ющем подразделе.

4.4 GitHub или PyPI

PyPI содержит последний официальный релиз, который был протестирован для большего числа версий
Python. GitHub содержит последний разрабатываемый код для продвинутых пользователей. Обычно
он также хорошо протестирован, но есть шанс, что впервые введённый интерфейс может быть изменён.

Для большинства пользователей установка из pip должна быть проще. Если по каким-то причинам вы
не можете это сделать, вы можете получить архив официального релиза из релизов GitHub.

pip устанавливает фреймворк в системную директорию, в то время как для установки с git вам нужно
поменять PYTHONPATH. Добавьте в ваш профиль (например, .profile или .bashrc в Linux)

export PYTHONPATH=$PYTHONPATH:<путь-к-lena>

и замените <путь-к-lena> на фактический путь к клонированному репозиторию.

72 Глава 4. Установка

https://github.com/ynikitenko/lena/releases

Глава 5

Документация

В начале работы прочтите Пособие.

Полная документация модулей Lena находится в Reference. Примечание. В данный момент на русский
язык переведена лишь первая часть пособия, https://habr.com/ru/post/490518/

73

https://habr.com/ru/post/490518/

Lena Documentation, Выпуск 0.1

74 Глава 5. Документация

Глава 6

Лицензия

Lena - это свободное программное обеспечение, опубликованное под лицензией Apache (версия 2). Вы
можете свободно использовать её для своего анализа данных, читать её исходный код и изменять его.

Она предназначена помочь людям при анализе данных, но мы не несём ответственности, если что-то
пойдёт не так.

75

https://github.com/ynikitenko/lena/blob/master/LICENSE

Lena Documentation, Выпуск 0.1

76 Глава 6. Лицензия

Глава 7

Альтернативы

Ruffus — вычислительный конвейер (computational pipeline) для Python, используемый в науке и био-
информатике. Он объединяет компоненты программы через запись и чтение файлов.

77

http://www.ruffus.org.uk/index.html

Lena Documentation, Выпуск 0.1

78 Глава 7. Альтернативы

Содержание модулей Python

l
lena.core, 35
lena.core.adapters, 37
lena.core.exceptions, 40
lena.flow, 41
lena.flow.functions, 43
lena.flow.group_plots, 43
lena.flow.iterators, 45
lena.flow.split_into_bins, 46
lena.math.elements, 50
lena.math.meshes, 48
lena.math.utils, 49
lena.math.vector3, 51
lena.structures, 58
lena.structures.graph, 60
lena.structures.hist_functions, 61
lena.variables.variable, 65

79

Lena Documentation, Выпуск 0.1

80 Содержание модулей Python

Алфавитный указатель

Символы
__call__() (метод Call), 37
__call__() (метод Chain), 45
__call__() (метод Context), 30
__call__() (метод CountFrom), 46
__call__() (метод MakeFilename), 55
__call__() (метод Not), 45
__call__() (метод Selector), 45
__call__() (метод Source), 35
__call__() (метод SourceEl), 39
__call__() (метод UpdateContext), 31
__call__() (метод Variable), 66
__getitem__() (метод Combine), 66

A
alter_sequence() (статический метод Cache),

42
angle() (метод vector3), 53

C
Cache (класс в lena.flow), 41
cache_exists() (метод Cache), 42
Call (класс в lena.core.adapters), 37
cell_to_string() (в модуле

lena.flow.split_into_bins), 47
Chain (класс в lena.flow.iterators), 45
check_edges_increasing() (в модуле

lena.structures.hist_functions), 61
clear() (метод GroupBy), 44
clip() (в модуле lena.math.utils), 49
Combine (класс в lena.variables.variable), 65
Compose (класс в lena.variables.variable), 66
compute() (метод FillCompute), 38
compute() (метод FillComputeSeq), 35
compute() (метод Histogram), 60
compute() (метод Mean), 50
compute() (метод SplitIntoBins), 47
compute() (метод Sum), 51
contains() (в модуле lena.context.functions), 31

Context (класс в lena.context), 29
cosine() (метод vector3), 53
CountFrom (класс в lena.flow.iterators), 46
cross() (метод vector3), 53

D
difference() (в модуле lena.context.functions), 31
dot() (метод vector3), 53
drop_cache() (метод Cache), 42
DropContext (класс в lena.flow), 42

E
End (класс в lena.flow), 42

F
fill() (метод FillCompute), 38
fill() (метод FillComputeSeq), 36
fill() (метод FillRequest), 38
fill() (метод FillRequestSeq), 36
fill() (метод Graph), 61
fill() (метод Histogram), 60
fill() (метод Mean), 50
fill() (метод SplitIntoBins), 47
fill() (метод Sum), 51
fill_into() (метод FillInto), 38
fill_into() (метод ISlice), 46
FillCompute (класс в lena.core.adapters), 37
FillComputeSeq (класс в lena.core), 35
FillInto (класс в lena.core.adapters), 38
FillRequest (класс в lena.core.adapters), 38
FillRequestSeq (класс в lena.core), 36
flatten() (в модуле lena.math.meshes), 48
format_context() (в модуле

lena.context.functions), 32
fromspherical() (метод класса

lena.math.vector3.vector3), 53, 54

G
get() (метод Variable), 67

81

Lena Documentation, Выпуск 0.1

get_bin_edges() (в модуле
lena.structures.hist_functions), 62

get_bin_on_index() (в модуле
lena.structures.hist_functions), 62

get_bin_on_value() (в модуле
lena.structures.hist_functions), 62

get_bin_on_value_1d() (в модуле
lena.structures.hist_functions), 63

get_context() (в модуле lena.flow.functions), 43
get_data() (в модуле lena.flow.functions), 43
get_data_context() (в модуле

lena.flow.functions), 43
get_example_bin() (в модуле

lena.flow.split_into_bins), 47
get_recursively() (в модуле

lena.context.functions), 32
Graph (класс в lena.structures.graph), 60
GroupBy (класс в lena.flow), 43
GroupPlots (класс в lena.flow), 44
GroupScale (класс в lena.flow), 44

H
hist1d_to_csv() (в модуле lena.output), 56
hist2d_to_csv() (в модуле lena.output), 56
hist_to_graph() (в модуле

lena.structures.hist_functions), 63
HistCell (класс в lena.structures.hist_functions),

61
Histogram (класс в lena.structures), 58

I
init_bins() (в модуле

lena.structures.hist_functions), 63
integral() (в модуле

lena.structures.hist_functions), 64
intersection() (в модуле lena.context.functions),

32
isclose() (метод vector3), 54
isclose() (в модуле lena.math.utils), 50
ISlice (класс в lena.flow.iterators), 46
iter_bins() (в модуле

lena.structures.hist_functions), 64
iter_cells() (в модуле

lena.structures.hist_functions), 64

L
LaTeXToPDF (класс в lena.output), 57
lena.core (модуль), 35
lena.core.adapters (модуль), 37
lena.core.exceptions (модуль), 40
lena.flow (модуль), 41
lena.flow.functions (модуль), 43
lena.flow.group_plots (модуль), 43
lena.flow.iterators (модуль), 45

lena.flow.split_into_bins (модуль), 46
lena.math.elements (модуль), 50
lena.math.meshes (модуль), 48
lena.math.utils (модуль), 49
lena.math.vector3 (модуль), 51
lena.structures (модуль), 58
lena.structures.graph (модуль), 60
lena.structures.hist_functions (модуль), 61
lena.variables.variable (модуль), 65
LenaAttributeError, 40
LenaEnvironmentError, 40
LenaException, 40
LenaIndexError, 40
LenaKeyError, 40
LenaNotImplementedError, 40
LenaRuntimeError, 40
LenaStopFill, 40
LenaTypeError, 40
LenaValueError, 40
LenaZeroDivisionError, 40

M
make_hist_context() (в модуле

lena.structures.hist_functions), 64
MakeFilename (класс в lena.output), 55
md_map() (в модуле lena.math.meshes), 49
Mean (класс в lena.math.elements), 50
mesh() (в модуле lena.math.meshes), 49

N
norm() (метод vector3), 54
Not (класс в lena.flow), 45

P
PDFToPNG (класс в lena.output), 55
points (атрибут Graph), 61
Print (класс в lena.flow), 43
proj() (метод vector3), 54

R
ReduceBinContent (класс в

lena.flow.split_into_bins), 46
refine_mesh() (в модуле lena.math.meshes), 49
RenderLaTeX (класс в lena.output), 57
request() (метод FillRequest), 38
request() (метод FillRequestSeq), 36
request() (метод Graph), 61
reset() (метод FillRequest), 39
reset() (метод FillRequestSeq), 36
reset() (метод Graph), 61
reset() (метод Histogram), 60
reset() (метод Mean), 51
reset() (метод Sum), 51
rotate() (метод vector3), 54

82 Алфавитный указатель

Lena Documentation, Выпуск 0.1

Run (класс в lena.core.adapters), 39
run() (метод Cache), 42
run() (метод DropContext), 42
run() (метод End), 42
run() (метод FillRequest), 39
run() (метод GroupPlots), 44
run() (метод ISlice), 46
run() (метод LaTeXToPDF), 57
run() (метод PDFToPNG), 56
run() (метод ReduceBinContent), 46
run() (метод RenderLaTeX), 57
run() (метод Run), 39
run() (метод Sequence), 35
run() (метод Split), 36
run() (метод ToCSV), 56
run() (метод Writer), 57

S
scalar_proj() (метод vector3), 54
scale() (метод Graph), 61
scale() (метод GroupScale), 44
scale() (метод Histogram), 60
Selector (класс в lena.flow), 45
seq_map() (в модуле lena.flow.functions), 43
Sequence (класс в lena.core), 35
Source (класс в lena.core), 35
SourceEl (класс в lena.core.adapters), 39
Split (класс в lena.core), 36
SplitIntoBins (класс в lena.flow.split_into_bins),

46
str_to_dict() (в модуле lena.context.functions),

33
str_to_list() (в модуле lena.context.functions),

33
Sum (класс в lena.math.elements), 51

T
to_csv() (метод Graph), 61
ToCSV (класс в lena.output), 56
TransformBins (класс в lena.flow.split_into_bins),

47

U
unify_1_md() (в модуле

lena.structures.hist_functions), 64
update() (метод GroupBy), 44
update_nested() (в модуле lena.context.functions),

33
update_recursively() (в модуле

lena.context.functions), 33
UpdateContext (класс в lena.context), 30

V
Variable (класс в lena.variables.variable), 66

vector3 (класс в lena.math.vector3), 52

W
Writer (класс в lena.output), 56

Алфавитный указатель 83

	Пособие
	Введение в Lena
	Split
	Ответы на упражнения

	Reference
	Context
	Core
	Flow
	Math
	Output
	Structures
	Variables

	Indices and tables
	Установка
	Минимальная
	Рекомендуемая
	Полная
	GitHub или PyPI

	Документация
	Лицензия
	Альтернативы
	Содержание модулей Python
	Алфавитный указатель

