
Lena Documentation
Release 0.6-beta

Yaroslav Nikitenko

Apr 16, 2024

CONTENTS:

1 Tutorial 3
1.1 Introduction to Lena . 3
1.2 Split . 11
1.3 Answers to exercises . 24

2 Reference 29
2.1 Context . 29
2.2 Core . 35
2.3 Flow . 42
2.4 Input . 53
2.5 Math . 55
2.6 Meta . 63
2.7 Output . 63
2.8 Structures . 69
2.9 Variables . 82

3 Indices and tables 85

4 Installation 87
4.1 Minimal . 87
4.2 Recommended . 87
4.3 Full . 87
4.4 GitHub or PyPI . 88

5 Documentation 89

6 License 91

7 Alternatives 93

Python Module Index 95

Index 97

i

ii

Lena Documentation, Release 0.6-beta

Lena is an architectural framework for data analysis. It is written in a popular programming language Python and works
with Python versions 2, 3 and PyPy (2 and 3).

Lena features from programming point of view include:

• simple and powerful programming language.

• modularity, weak coupling. Algorithms can be easily added, replaced or reused.

• code reuse. Logic is separated from presentation. One template can be used for several plots.

• rapid development. One can run only those elements which already work. During development only a small
subset of data can be analysed (to check the code). Results of heavy calculations can be easily saved.

• performance. Lazy evaluation is good for memory and speed. Several analyses can be done reading data once.
PyPy with just-in-time compiler can be used if needed.

• easy to understand, structured and beautiful code.

From data analysis perspective:

• comparison of analyses with arbitrary changes (including different input data or algorithms).

• algorithm reuse for a subset of data (for example, to see how an algorithm works at different positions in the
detector).

• analysis consistency. When we run several algorithms for same data or reuse an algorithm, we are confident that
we use same data and algorithm.

• algorithms can be combined into a more complex analysis.

Lena was created in experimental neutrino physics and is named after a great Siberian river.

CONTENTS: 1

Lena Documentation, Release 0.6-beta

2 CONTENTS:

CHAPTER

ONE

TUTORIAL

1.1 Introduction to Lena

In our data analysis we often face changing data or algorithms. For example, we may want to see how our analysis
works for another dataset or for a specific subset of the data. We may also want to use different algorithms and compare
their results.

To handle this gracefully, we must be able to easily change or extend our code at any specified point. The idea of Lena
is to split our code into small independent blocks, which are later composed together. The tutorial will show us how to
do that and what implications this idea will have for our code.

Contents

• The three ideas behind Lena

– 1. Sequences and elements

– 2. Lazy evaluation

– 3. Context

• A real analysis example

• Elements for development

1.1.1 The three ideas behind Lena

1. Sequences and elements

The basic idea of Lena is to join our computations into sequences. Sequences consist of elements.

The simplest Lena program may be the following. We use a sequence with one element, an anonymous function, which
is created in Python by lambda keyword:

>>> from lena.core import Sequence
>>> s = Sequence(
... lambda i: pow(-1, i) * (2 * i + 1),
...)
>>> results = s.run([0, 1, 2, 3])
>>> for res in results:
... print(res)
1 -3 5 -7

3

Lena Documentation, Release 0.6-beta

The first line imports a Lena class Sequence. A Sequence can be initialized from several elements. To make the
Sequence do the actual work, we use its method run. Run’s argument is an iterable (in this case a list of four numbers).

To obtain all results, we iterate them in the cycle for.

Let us move to a more complex example. It is often convenient not to pass any data to a function, which gets it
somewhere else itself. In this case use a sequence Source:

from lena.core import Sequence, Source
from lena.flow import CountFrom, Slice

s = Sequence(
lambda i: pow(-1, i) * (2 * i + 1),

)
spi = Source(

CountFrom(0),
s,
Slice(10**6),
lambda x: 4./x,
Sum(),

)
results = list(spi())
[3.1415916535897743]

The first element in Source must have a __call__ special method, which accepts no arguments and generates values
itself. These values are propagated by the sequence: each following element receives as input the results of the previous
element, and the sequence call gives the results of the last element.

A CountFrom is an element, which produces an infinite series of numbers. Elements must be functions or objects, but
not classes1. We pass the starting number to CountFrom during its initialization (in this case zero). The initialization
arguments of CountFrom are start (by default zero) and step (by default one).

The following elements of a Source (if present) must be callables or objects with a method called run. They can form
a simple Sequence themselves.

Sequences can be joined together. In our example, we use our previously defined sequence s as the second element of
Source. There would be no difference if we used the lambda from s instead of s.

A Sequence can be placed before, after or inside another Sequence. A Sequence can’t be placed before a Source, because
it doesn’t accept any incoming flow.

Note: If we try to instantiate a Sequence with a Source in the middle, the initialization will instantly fail and throw a
LenaTypeError (a subtype of Python’s TypeError).

All Lena exceptions are subclassed from LenaException. They are raised as early as possible (not after a long analysis
was fulfilled and discarded).

Since we can’t use an infinite series in practice, we must stop it at some point. We take the first million of its items
using a Slice element. Slice and CountFrom are similar to islice and count functions from Python’s standard library
module itertools. Slice can also be initialized with start, stop[, step] arguments, which allow to skip some initial or
final subset of data (defined by its index), or take each step-th item (if the step is two, use all even indices from zero).

We apply a further transformation of data with a lambda, and sum the resulting values.

Finally, we materialize the results in a list, and obtain a rough approximation of pi.
1 This possibility may be added in the future.

4 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

2. Lazy evaluation

Let us look at the last element of the previous sequence. Its class has a method run, which accepts the incoming flow:

class Sum():
def run(self, flow):

s = 0
for val in flow:

s += val
yield s

Note that we give the final number not with return, but with yield. Yield is a Python keyword, which turns a usual
function into a generator.

Generators are Python’s implementation of lazy evaluation. In the very first example we used a line

>>> results = s.run([0, 1, 2, 3])

The method run of a Sequence is a generator. When we call a generator, we obtain the result, but no computation really
occurs, no statement from the generator’s code is executed. To actually calculate the results, the generator must be
materialized. This can be done in a container (like a list or tuple) or in a cycle:

>>> for res in results:
... print(res)

Lazy evaluation is good for:

• performance. Reading data files may be one of the longest steps in simple data analysis. Since lazy evaluation
uses only one value at a time, this value can be used immediately without waiting when the reading of the whole
data set is finished. This allows us to make a complete analysis in almost the same time as just to read the input
data.

• low memory impact. Data is immediately used and not stored anywhere. This allows us to analyse data sets
larger than the physical memory, and thus makes our program scalable.

Lazy evaluation is very easy to implement in Python using a yield keyword. Generators must be carefully distinguished
from ordinary functions in Lena. If an object inside a sequence has a run method, it is assumed to be a generator.
Otherwise, if the object is callable, it is assumed to be a function, which makes some simple transformation of the
input value.

Generators can yield zero or multiple values. Use them to alter or reduce data flow. Use functions or callable objects
for calculations that accept and return a single value.

3. Context

Lena’s goal is to cover the data analysis process from beginning to end. The final results of an analysis are tables and
plots, which can be used by people.

Lena doesn’t draw anything itself, but relies on other programs. It uses a library Jinja to render text templates. There
are no predefined templates or magic constants in Lena, and users have to write their own ones. An example for a
one-dimensional LaTeX plot is:

% histogram_1d.tex
\documentclass{standalone}
\usepackage{tikz}
\usepackage{pgfplots}

(continues on next page)

1.1. Introduction to Lena 5

Lena Documentation, Release 0.6-beta

(continued from previous page)

\pgfplotsset{compat=1.15}

\begin{document}
\begin{tikzpicture}
\begin{axis}[]
\addplot [

const plot,
]
table [col sep=comma, header=false] {\VAR{ output.filepath }};
\end{axis}
\end{tikzpicture}
\end{document}

This is a simple TikZ template except for one line: \VAR{ output.filepath }. \VAR{ var } is substituted with the actual
value of var during rendering. This allows to use one template for different data, instead of creating many identical
files for each plot. In that example, variable output.filepath is passed in a rendering context.

A more sophisticated example could be the following:

\BLOCK{ set var = variable if variable else '' }
\begin{tikzpicture}
\begin{axis}[

\BLOCK{ if var.latex_name }
xlabel = { $\VAR{ var.latex_name }$
\BLOCK{ if var.unit }

[$\mathrm{\VAR{ var.unit }}$]
\BLOCK{ endif }
},

\BLOCK{ endif }
]
...

If there is a variable in context, it is named var for brevity. If it has a latex_name and unit, then these values will be
used to label the x axis. For example, it could become x [m] or E [keV] on the plot. If no name or unit were provided,
the plot will be rendered without a label, but also without an error or a crash.

Jinja allows very rich programming possibilities. Templates can set variables, use conditional operators and cycles.
Refer to Jinja documentation2 for details.

To use Jinja with LaTeX, Lena slightly changed its default syntax3: blocks and variables are enclosed in \BLOCK and
\VAR environments respectively.

A context is a simple Python dictionary or its subclass. Flow in Lena consists of tuples of (data, context) pairs. It
is usually not called dataflow, because it also has context. As it was shown earlier, context is not necessary for Lena
sequences. However, it greatly simplifies plot creation and provides complementary information with the main data.
To add context to the flow, simply pass it with data as in the following example:

class ReadData():
"""Read data from CSV files."""

def run(self, flow):
"""Read filenames from flow and yield vectors.

(continues on next page)

2 Jinja documentation: https://jinja.palletsprojects.com/
3 To use Jinja to render LaTeX was proposed here and here, template syntax was taken from the original article.

6 Chapter 1. Tutorial

https://jinja.palletsprojects.com/
http://eosrei.net/articles/2015/11/latex-templates-python-and-jinja2-generate-pdfs
https://web.archive.org/web/20121024021221/http://e6h.de/post/11/

Lena Documentation, Release 0.6-beta

(continued from previous page)

If vector component could not be cast to float,
ValueError is raised.
"""
for filename in flow:

with open(filename, "r") as fil:
for line in fil:

vec = [float(coord)
for coord in line.split(',')]

(data, context) pair
yield (vec, {"data": {"filename": filename}})

We read names of files from the incoming flow and yield coordinate vectors. We add file names to a nested dictionary
“data” (or whatever we call it). Filename could be referred in the template as data[“filename”] or simply data.filename.

Template rendering is widely used in a well developed area of web programming, and there is little difference between
rendering an HTML page or a LaTeX file, or any other text file. Even though templates are powerful, good design
suggests using their full powers only when necessary. The primary task of templates is to produce plots, while any
nontrivial calculations should be contained in data itself (and provided through a context).

Context allows separation of data and presentation in Lena. This is considered a good programming practice, because
it makes parts of a program focus on their primary tasks and avoids code repetition.

Since all data flow is passed inside sequences of the framework, context is also essential if one needs to pass some
additional data to the following elements. Different elements update the context from flow with their own context,
which persists unless it is deleted or changed.

1.1.2 A real analysis example

Now we are ready to do some real data processing. Let us read data from a file and make a histogram of x coordinates.

Note: The complete example with other files for this tutorial can be found in docs/examples/tutorial directory of the
framework’s tree or online.

Listing 1: main.py

import os

from lena.core import Sequence, Source
from lena.math import mesh
from lena.output import ToCSV, Write, LaTeXToPDF, PDFToPNG
from lena.output import MakeFilename, RenderLaTeX
from lena.structures import Histogram

from read_data import ReadData

def main():
data_file = os.path.join("..", "data", "normal_3d.csv")
s = Sequence(

ReadData(),
(continues on next page)

1.1. Introduction to Lena 7

https://github.com/ynikitenko/lena/tree/master/docs/examples/tutorial

Lena Documentation, Release 0.6-beta

(continued from previous page)

lambda dt: (dt[0][0], dt[1]),
Histogram(mesh((-10, 10), 10)),
ToCSV(),
MakeFilename("x"),
Write("output"),
RenderLaTeX("histogram_1d.tex"),
Write("output"),
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
print(list(results))

if __name__ == "__main__":
main()

If we run the script, the resulting plots and intermediate files will be written to the directory output/, and the terminal
output will be similar to this:

$ python main.py
pdflatex -halt-on-error -interaction batchmode -output-directory output output/x.tex
pdftoppm output/x.pdf output/x -png -singlefile
[(‘output/x.png’, {‘output’: {‘filetype’: ‘png’}, ‘data’: {‘filename’: ‘../data/normal_3d.csv’}, ‘histogram’: {‘ranges’:
[(-10, 10)], ‘dim’: 1, ‘nbins’: [10]}})]

During the run, the element LaTeXToPDF called pdflatex, and PDFToPNG called pdftoppm program. The commands
are printed with all arguments, so that if there was an error during LaTeX rendering, you can run this command manually
until the rendered file output/x.tex is fixed (and then fix the template).

The last line of the output is the data and context, which are the results of the sequence run. The elements which produce
files usually yield (file path, context) pairs. In this case there is one resulting value, which has a string output/x.png as
its data part.

Let us return to the script to see the sequence in more details. The sequence s runs one data file (the list could easily
contain more). Since our ReadData produces a (data, context) pair, the following lambda leaves the context part
unchanged, and gets the zeroth index of each incoming vector (which is the zeroth part of the (data, context) pair).

This lambda is not very readable, and we’ll see a better and more general approach in the next part of the tutorial. But
it shows how the flow can be intercepted and transformed at any point within a sequence.

The resulting x components fill a Histogram, which is initialized with edges defined a mesh from -10 to 10 with 10
bins.

This histogram, after it has been fed with the complete flow, is transformed to a CSV (comma separated values) text.
In order for external programs (like pdflatex) to use the resulting table, it must be written to a file.

MakeFilename adds file name to context[“output”] dictionary. context.output.filename is the file name without path
and extension (the latter will be set by other elements depending on the format of data: first it is a csv table, then it may
become a pdf plot, etc.) Since there is only one file expected, we can simply call it x.

Write element writes text data to the file system. It is initialized with the name of the output directory. To be written,
the context of a value must have an “output” subdictionary.

8 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

After we have produced the csv table, we can render our LaTeX template histogram_1d.tex with that table and context,
and convert the plot to pdf and png. As earlier, RenderLaTeX produces text, which must be written to the file system
before used.

Congratulations: now you can do a complete analysis using the framework, from the beginning to the final plots. In
the end of this part of the tutorial we’ll show several Lena elements which may be useful during development.

1.1.3 Elements for development

Let us use the structure of the previous analysis and add some more elements to the sequence:

from lena.context import Context
from lena.flow import Cache, End, Print

s = Sequence(
Print(),
ReadData(),
Print(),
Slice(1000),
lambda val: val[0][0], # data.x
Histogram(mesh((-10, 10), 10)),
Context(),
Cache("x_hist.pkl"),
End(),
ToCSV(),
...

)

Print outputs values, which pass through it in the flow. If we suspect an error or want to see exactly what is happening
at a given point, we can put any number of Print elements anywhere we want. We don’t need to search for other files
and add print statements there to see the input and output values.

Slice, which we met earlier when approximating pi, limits the flow to the specified number of items. If we are not sure
that our analysis is already correct, we can select only a small amount of data to test that.

Context is an element, which is a subclass of dictionary, and it can be used as a context when a formatted output is
needed. If a Context object is inside a sequence, it transforms the context part of the flow to its class, which is indented
during output (not in one line, as a usual dict). This may help during manual analysis of many nested contexts.

Cache stores the incoming flow or loads it from file. Its initialization argument is the file name to store the flow. If
the file is missing, then Cache creates that, runs the previous elements, and stores values from the flow into the file.
On subsequent runs it loads the flow from file, and no previous elements are run. Cache uses pickle, which allows
serialization and deserialization of most Python objects (except function’s code). If you have some lengthy calculation
and want to save the results (for example, to improve plots, which follow in the sequence), you can use Cache. If you
changed the algorithm before Cache, simply delete the file to refill that with the new flow.

End runs all previous elements and stops analysis here. If we enabled that in this example, Cache would be filled or
read (as without the End element), but nothing would be passed to ToCSV and further. One can use End if they know
for sure, that the following analysis is incomplete and will fail.

1.1. Introduction to Lena 9

Lena Documentation, Release 0.6-beta

Summary

Lena encourages to split analysis into small independent elements, which are joined into sequences. This allows to
substitute, add or remove any element or transform the flow at any place, which may be very useful for development.
Sequences can be elements of other sequences, which allows their reuse.

Elements can be callables or generators. Simple callables can be easily added to transform each value from the flow,
while generators can transform the flow, adding more values or reducing that. Generators allow lazy evaluation, which
benefits memory impact and generalizes algorithms to use potentially many values instead of one.

Complete information about the analysis is provided through the context. It is the user’s responsibility to add the needed
context and to write templates for plots. The user must also provide some initial context for naming files and plots, but
apart from that the framework transfers and updates context itself.

We introduced two basic sequences. A Sequence can be placed before, after or inside another Sequence. A Source is
similar to a Sequence, but no other sequence can precede that.

Table 1: Sequences
Sequence Initialization Usage
Sequence Elements with a __call__(value) or run(flow) method (or callables) s.run(flow)
Source The first element has a __call__() method (or is callable), others form a Sequence s()

In this part of the tutorial we have learnt how to make a simple analysis of data read from a file and how to produce
several plots using only one template. In the next part we’ll learn about new types of elements and sequences and how
to make several analyses reading a data file only once.

Exercises

1. Ivan wants to become more familiar with generators and implements an element End. He writes this class:

class End(object):
"""Stop sequence here."""

def run(self, flow):
"""Exhaust all preceding flow and stop iteration."""
for val in flow:

pass
raise StopIteration()

and adds this element to main.py example above. When he runs the program, he gets

Traceback (most recent call last):
File “main.py”, line 46, in <module>

main()
File “main.py”, line 42, in main

results = s.run([data_file])
File “lena/core/sequence.py”, line 70, in run

flow = elem.run(flow)
File “main.py”, line 24, in run

raise StopIteration()
StopIteration

10 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

It seems that no further elements were executed, indeed. However, Ivan recalls that StopIteration inside a gener-
ator should lead to a normal exit and should not be an error. What was done wrong?

2. Svetlana wants to make sure that no statement is really executed during a generator call. Write a simple generator
to check that.

3. Count counts values passing through that. In order for that not to change the data flow, it should add results to
the context. What other design decisions should be considered? Write its simple implementation and check that
it works as a sequence element.

4. Lev doesn’t like how the output in previous examples is organised.

“In our object-oriented days, I could use only one object to make the whole analysis”, - he says. “Histogram to
CSV, Write, Render, Write again,. . . : if our output system remains the same, and we need to repeat that in every
script, this is a code bloat”.

How to make only one element for the whole output process? What are advantages and disadvantages of these
two approaches?

5. ** Remember the implementation of Sum earlier. Suppose you need to split one flow into two to make two
analyses, so that you don’t have to read the flow several times or store it completely in memory.

Will this Sum allow that, why? How should it be changed? These questions will be answered in the following
part of the tutorial.

The answers to the excercises are given in the end of the tutorial.

1.2 Split

In this part of the tutorial we’ll learn how to make several analyses reading input data only once and without storing
that in memory.

Contents

• Introduction

• Variables

– Combine

– Compose

• Analysis example

• Adapters, elements and sequences

• Split

• Context. Performance and safety

1.2. Split 11

Lena Documentation, Release 0.6-beta

1.2.1 Introduction

If we want to process same data flow “simultaneously” by sequence1 and sequence2, we use the element Split:

from lena.core import Split

s = Sequence(
ReadData(),
Split([

sequence1,
sequence2,
...

]),
ToCSV(),
...

)

The first argument of Split is a list of sequences, which are applied to the incoming flow “in parallel” (not in the sense
of processes or threads).

However, not every sequence can be used in parallel with others. Recall the example of an element Sum from the first
part of the tutorial:

class Sum1():
def run(self, flow):

s = 0
for val in flow:

s += val
yield s

The problem is that if we pass it a flow, it will consume it completely. After we call Sum1().run(flow), there is no way
to stop iteration in the inner cycle and resume that later. To reiterate the flow in another sequence we would have to
store that in memory or reread all data once again.

To run analyses in parallel, we need another type of element. Here is Sum refactored:

class Sum():
def __init__(self):

self._sum = 0

def fill(self, val):
self._sum += val

def compute(self):
yield self._sum

This Sum has methods fill(value) and compute(). Fill is called by some external code (for example, by Split). After
there is nothing more to fill, the results can be generated by compute. The method name fill makes its class similar to a
histogram. Compute in this example is trivial, but it may include some larger computations. We call an element with
methods fill and compute a FillCompute element. An element with a run method can be called a Run element.

A FillCompute element can be generalized. We can place before that simple functions, which will transform values
before they fill the element. We can also add other elements after FillCompute. Since compute is a generator, these
elements can be either simple functions or Run elements. A sequence with a FillCompute element is called a FillCom-
puteSeq.

Here is a working example:

12 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

Listing 2: tutorial/2_split/main1.py

data_file = os.path.join("..", "data", "normal_3d.csv")
s = Sequence(

ReadData(),
Split([

(
lambda vec: vec[0],
Histogram(mesh((-10, 10), 10)),
ToCSV(),
Write("output", "x"),

),
(

lambda vec: vec[1],
Histogram(mesh((-10, 10), 10)),
ToCSV(),
Write("output", "y"),

),
]),
RenderLaTeX("histogram_1d.tex", "templates"),
Write("output"),
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

Lena Histogram is a FillCompute element. The elements of the list in Split (tuples in this example) during the initial-
ization of Split are transformed into FillCompute sequences. The lambdas select parts of vectors, which will fill the
corresponding histogram. After the histogram is filled, it is given appropriate name by Write (so that they could be
distinguished in the following flow).

Write has two initialization parameters: the default directory and the default file name. Write only writes strings
(and unicode in Python 2). Its corresponding context is called output (as its module). If output is missing in the
context, values pass unchanged. Otherwise, file name and extension are searched in context.output. If output.filename
or output.fileext are missing, then the default file name or “txt” are used. The default file name should be used only
when you are sure that only one file is going to be written, otherwise it will be rewritten every time. The defaults
Write’s parameters are empty string (current directory) and “output” (resulting in output.txt).

ToCSV yields a string and sets context.output.fileext to “csv”. In the example above Write objects write CSV data to
output/x.csv and output/y.csv.

For each file written, Write yields a tuple (file path, context), where context.output.filepath is updated with the path to
file.

After the histograms are filled and written, Split yields them into the following flow in turn. The containing sequence
s doesn’t distinguish Split from other elements, because Split acts as any Run element.

1.2. Split 13

Lena Documentation, Release 0.6-beta

1.2.2 Variables

One of the basic principles in programming is “don’t repeat yourself” (DRY).

In the example above, we wanted to give distinct names to histograms in different analysis branches, and used two
writes to do that. However, we can move ToCSV and Write outside the Split (and make our code one line shorter):

Listing 3: tutorial/2_split/main2.py

from lena.output import MakeFilename
s = Sequence(

ReadData(),
Split([

(
lambda vec: vec[0],
Histogram(mesh((-10, 10), 10)),
MakeFilename("x"),

),
(

lambda vec: vec[1],
Histogram(mesh((-10, 10), 10)),
MakeFilename("y"),

),
]),
ToCSV(),
Write("output"),
... as earlier ...

)

Element MakeFilename adds file name to context.output. Write doesn’t need a default file name anymore. Now it writes
two different files, because context.output.filename is different.

The code that we’ve written now is very explicit and flexible. We clearly see each step of the analysis and it as a whole.
We control output names and we can change the logic as we wish by adding another element or lambda. The structure
of our analysis is very transparent, but the code is not beautiful enough.

Lambdas don’t improve readability. Indices 0 and 1 look like magic constants. They are connected to names x and y
in the following flow, but let us unite them in one element (and improve the cohesion of our code):

Listing 4: tutorial/2_split/main3.py

from lena.variables import Variable

def main():
data_file = os.path.join("..", "data", "normal_3d.csv")
write = Write("output")
s = Sequence(

ReadData(),
Split([

(
Variable("x", lambda vec: vec[0]),
Histogram(mesh((-10, 10), 10)),

),
(

Variable("y", lambda vec: vec[1]),
(continues on next page)

14 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

(continued from previous page)

Histogram(mesh((-10, 10), 10)),
),
(

Variable("z", lambda vec: vec[2]),
Histogram(mesh((-10, 10), 10)),

),
]),
MakeFilename("{{variable.name}}"),
ToCSV(),
write,
RenderLaTeX("histogram_1d.tex", "templates"),
write,
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

A Variable is essentially a function with a name. It transforms data and adds its own name to context.variable.name.

In this example we initialize a variable with a name and a function. It can accept arbitrary keyword arguments, which
will be added to its context. For example, if our data is a series of (positron, neutron) events, then we can make a
variable to select the second event:

neutron = Variable(
"neutron", lambda double_ev: double_ev[1],
latex_name="n", type="particle"

)

In this case context.variable will be updated not only with name, but also latex_name and type. In code their values
can be got as variable’s attributes (e.g. neutron.latex_name). Variable’s function can be initialized with the keyword
getter and is available as a method getter.

MakeFilename accepts not only constant, but also format strings, which take arguments from context. In our example,
MakeFilename(“{{variable.name}}”) creates file name from context.variable.name.

Note also that since two Writes do the same thing, we rewrote them as one object.

Combine

Variables can be joined into a multidimensional variable using Combine.

Combine(var1, var2, . . .) applied to a value is a tuple ((var1.getter(value), var2.getter(value), . . .), context). The first
element of the tuple is value transformed by each of the composed variables. Variable.getter is a function that returns
only data without context.

Combine is a subclass of a Variable, and it accepts arbitrary keywords during initialization. All positional arguments
must be Variables. Name of the combined variable can be passed as a keyword argument. If not provided, it is its
variables’ names joined with ‘_’.

The resulting context is that of a usual Variable updated with context.variable.combine, where combine is a tuple of
each variable’s context.

Combine has an attribute dim, which is the number of its variables. A constituting variable can be accessed using its
index. For example, if cv is Combine(var1, var2), then cv.dim is 2, cv.name is var1.name_var2.name, and cv[1] is var2.

1.2. Split 15

Lena Documentation, Release 0.6-beta

Combine variables are used for multidimensional plots.

Compose

When we put several variables or functions into a sequence, we obtain their composition. In the Lena framework we
want to preserve as much context as possible. If some previous element was a Variable, its context is moved into
variable.compose subcontext.

Function composition can be also defined as variables.Compose.

In this example we first select the neutron part of the data, and then the x coordinate:

>>> from lena.variables import Variable, Compose
>>> # data is pairs of (positron, neutron) coordinates
>>> data = [((1.05, 0.98, 0.8), (1.1, 1.1, 1.3))]
>>> x = Variable(
... "x", lambda coord: coord[0], type="coordinate"
...)
>>> neutron = Variable(
... "neutron", latex_name="n",
... getter=lambda double_ev: double_ev[1], type="particle"
...)
>>> x_n = Compose(neutron, x)
>>> x_n(data[0])[0] # data
1.1

Data part of the result, as expected, is the composition of variables neutron and x. Same result could be obtained as a
sequence of variables: Sequence(neutron, x).run(data), but the context of Compose is created differently.

The name of the composed variable is names of its variables (from left to right) joined with underscore. If there are
two variables, LaTeX name will be also created from their names (or LaTeX names, if present) as a subscript in reverse
order. In our example the context will be this:

>>> x_n(data[0])[1]
{

'variable': {
'name': 'neutron_x', 'particle': 'neutron',
'latex_name': 'x_{n}', 'coordinate': 'x', 'type': 'coordinate',
'compose': {

'type': 'particle', 'latex_name': 'n',
'name': 'neutron', 'particle': 'neutron'

},
}

}

Context of the composed variable is updated with a compose subcontext, which makes it similar to the context produced
by variables in a sequence.

As for any variable, name or other parameters can be passed as keyword arguments during initialization.

Keyword type has a special meaning. If present, then during initialization of a variable its context is updated with
{variable.type: variable.name} pair. During variable composition (in Compose or by subsequent application to the
flow) context.variable is updated with new variable’s context, but if its type is different, it will persist. This allows
access to context.variable.particle even if it was later composed with other variables.

16 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

1.2.3 Analysis example

Let us combine what we’ve learnt before and use it in a real analysis. An important change would be that if we create 2-
dimensional plots, we add another template for that. Below is a small example. All template commands were explained
in the first part of the tutorial.

Listing 5: tutorial/2_split/templates/histogram_2d.tex

\documentclass{standalone}
\usepackage{tikz}
\usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer}
\pgfplotsset{compat=1.15}

\BLOCK{ set varx = variable.combine[0] }
\BLOCK{ set vary = variable.combine[1] }

\begin{document}
\begin{tikzpicture}

\begin{axis}[
view={0}{90},
grid=both,
\BLOCK{ set xcols = histogram.nbins[0]|int + 1 }
\BLOCK{ set ycols = histogram.nbins[1]|int + 1 }
mesh/cols=\VAR{xcols},
mesh/rows=\VAR{ycols},
colorbar horizontal,
xlabel = {$\VAR{ varx.latex_name }$

\BLOCK{ if varx.unit }[$\mathrm{\VAR{ varx.unit }}$]\BLOCK{ endif }},
ylabel = {$\VAR{ vary.latex_name }$

\BLOCK{ if vary.unit }[$\mathrm{\VAR{ vary.unit }}$]\BLOCK{ endif }},
]
\addplot3 [

surf,
mesh/ordering=y varies,

] table [col sep=comma, header=false] {\VAR{ output.filepath }};
\end{axis}

\end{tikzpicture}
\end{document}

If an axis has a unit, it will be added to its label (like x [cm]).

RenderLaTeX accepts a function as the first initialization argument or as a keyword select_template. That function must
accept a value (presumably a (data, context) pair) from the flow, and return a template file name (to be found inside
template_path).

Listing 6: tutorial/2_split/main4.py

import os

import lena.context
import lena.flow
from lena.core import Sequence, Split, Source
from lena.structures import Histogram

(continues on next page)

1.2. Split 17

Lena Documentation, Release 0.6-beta

(continued from previous page)

from lena.math import mesh
from lena.output import ToCSV, Write, LaTeXToPDF, PDFToPNG
from lena.output import MakeFilename, RenderLaTeX
from lena.variables import Variable, Compose, Combine

from read_data import ReadDoubleEvents

positron = Variable(
"positron", latex_name="e^+",
getter=lambda double_ev: double_ev[0], type="particle"

)
neutron = Variable(

"neutron", latex_name="n",
getter=lambda double_ev: double_ev[1], type="particle"

)
x = Variable("x", lambda vec: vec[0], latex_name="x", unit="cm", type="coordinate")
y = Variable("y", lambda vec: vec[1], latex_name="y", unit="cm", type="coordinate")
z = Variable("z", lambda vec: vec[2], latex_name="z", unit="cm", type="coordinate")

coordinates_1d = [
(

coordinate,
Histogram(mesh((-10, 10), 10)),

)
for coordinate in [

Compose(particle, coord)
for coord in (x, y, z)
for particle in (positron, neutron)

]
]

def select_template(val):
data, context = lena.flow.get_data_context(val)
if lena.context.get_recursively(context, "histogram.dim", None) == 2:

return "histogram_2d.tex"
else:

return "histogram_1d.tex"

def main():
data_file = os.path.join("..", "data", "double_ev.csv")
write = Write("output")
s = Sequence(

ReadDoubleEvents(),
Split(

coordinates_1d
+
[(

particle,
Combine(x, y, name="xy"),

(continues on next page)

18 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

(continued from previous page)

Histogram(mesh(((-10, 10), (-10, 10)), (10, 10))),
MakeFilename("{{variable.particle}}/{{variable.name}}"),

)
for particle in (positron, neutron)
]

),
MakeFilename("{{variable.particle}}/{{variable.coordinate}}"),
ToCSV(),
write,
RenderLaTeX(select_template, template_dir="templates"),
write,
LaTeXToPDF(),
PDFToPNG(),

)
results = s.run([data_file])
for res in results:

print(res)

if __name__ == "__main__":
main()

We import ReadDoubleEvents from a separate file. That class is practically the same as earlier, but it yields pairs of
events instead of one by one.

We define coordinates_1d as a simple list of coordinates’ composition. Note that we could make all combinations
directly using the language. We could also do that in Split, but if we use all these coordinates together in different
analyses or don’t want to clutter the algorithm code, we can separate them.

In our new function select_template we use lena.context.get_recursively. This function is needed because we often
have nested dictionaries, and Python’s dict.get method doesn’t recurse. We provide the default return value None, so
that it doesn’t raise an exception in case of a missing key.

In the Split element we fill histograms for 1- and 2-dimensional plots in one run. There are two MakeFilename elements,
but MakeFilename doesn’t overwrite file names set previously.

We created our first 2-dimensional histogram using lena.math.mesh. It accepts parameters ranges and nbins. In a
multidimensional case these parameters are tuples of ranges and number of bins in corresponding dimensions, as in
mesh(((-10, 10), (-10, 10)), (10, 10)).

After we run this script, we obtain two subdirectories in output for positron and neutron, each containing 4 plots (both
pdf and png); in total 8 plots with proper names, units, axes labels, etc. It is straightforward to add other plots if we
want, or to disable some of them in Split by commenting them out. The variables that we defined at the top level could
be reused in other modules or moved to a separate module.

Note the overall design of our algorithm. We prepare all necessary data in ReadDoubleEvents. After that, Split uses
different parts of these double events to create different plots. All important parameters should be contained in data
itself. These allows a separation of data from presentation.

The knowledge we’ll learn by the end of this chapter will be sufficient for most of practical analyses. Following sections
give more details about Lena elements and usage.

1.2. Split 19

Lena Documentation, Release 0.6-beta

1.2.4 Adapters, elements and sequences

Objects don’t need to inherit from Lena classes to be used in the framework. Instead, they have to implement methods
with specified names (like run, fill, etc). This is called structural subtyping in Python1.

The specified method names can be changed using adapters. For example, if we have a legacy class

class MyEl():
def my_run(self, flow):

for val in flow:
yield val

then we can create a Run element from a MyEl object with the adapter Run:

>>> from lena.core import Run
>>> my_run = Run(MyEl(), run="my_run")
>>> list(my_run.run([1, 2, 3]))
[1, 2, 3]

The adapter receives method name as a keyword argument. After it is created, it can be called with a method named
run or inserted into a Lena sequence.

Similarly, a FillCompute adapter accepts names for methods fill and compute:

FillCompute(el, fill='fill', compute='compute')

If callable methods fill and compute were not found in el, LenaTypeError is raised.

What other types of elements are possible in data analysis? A common algorithm in physics is event selection. We
analyse a large set of data looking for specific events. These events can be missing there or contained in a large quantity.
To deal with this, we have to be prepared not to consume all flow (as a Run element does) and not to store all flow in
the element before that is yielded. We create an element with a fill method, and call the second method request. A
FillRequest element is similar to FillCompute, but request can be called multiple times. As with FillComputeSeq, we
can add Call elements (lambdas) before a FillRequest element and Call or Run elements after that to create a sequence
FillRequestSeq.

Elements can be transformed one into another. During initialization a Sequence checks for each its argument whether
it has a run method. If it is missing, it tries to convert the element to a Run element using the adapter.

Run can be initialized from a Call or a FillCompute element. A callable is run as a transformation function, which
accepts single values from the flow and returns their transformations for each value:

for val in flow:
yield self._el(val)

A FillCompute element is run the following way: first, fill(value) is called for the whole flow. After the flow is exhausted,
compute() is called.

There are algorithms and structures which are inherently not memory safe. For example, lena.structures.Graph stores
all filled data as its points, and it is a FillRequest element. Since FillRequest can’t be used directly in a Sequence, or if
we want to yield only the final result once, we cast that with FillCompute(Graph()). We can do that when we are sure
that our data won’t overflow memory, and that cast will be explicit in our code.

To sum up, adapters in Lena can be used for several purposes:

• provide a different name for a method (Run(my_obj, run=”my_run”)),
1 PEP 544 – Protocols: Structural subtyping (static duck typing): https://www.python.org/dev/peps/pep-0544

20 Chapter 1. Tutorial

https://www.python.org/dev/peps/pep-0544

Lena Documentation, Release 0.6-beta

• hide unused methods to prevent ambiguity (if an element has many methods, we can wrap that in an adapter to
expose only the needed ones),

• automatically convert objects of one type to another in sequences (FillCompute to Run),

• explicitly cast object of one type to another (FillRequest to FillCompute).

1.2.5 Split

In the examples above, Split contained several FillComputeSeq sequences. However, it can be used with all other
sequences we know.

Split has a keyword initialization argument bufsize, which is the size of the buffer for the input flow.

During Split.run(flow), the flow is divided into subslices of bufsize. Each subslice is processed by sequences in the
order of their initializer list (the first positional argument in Split.__init__).

If a sequence is a Source, it doesn’t accept the incoming flow, but produces its own complete flow and becomes inactive
(is not called any more).

A FillRequestSeq is filled with the buffer contents. After the buffer is finished, it yields all values from request().

A FillComputeSeq is filled with values from each buffer, but yields values from compute only after the whole flow is
finished.

A Sequence is called with run(buffer) instead of the whole flow. The results are yielded for each buffer. If the whole
flow must be analysed at once, don’t use such a sequence in Split.

If the flow was empty, each __call__ (from Source), compute, request or run is called nevertheless.

Source within Split can be used to add new data to flow. For example, we can create Split([source, ()]), and in this
place of a sequence first all data from source will be generated, then all data from preceding elements will be passed
(empty Sequence passes values unchanged). This can be used to provide several flows to a further element (like data,
Monte Carlo and analytical approximation).

Split acts both as a sequence (because it contains sequences) and as an element. If all its elements (sequences, to be
precise) have the same type, Split will have methods of this type. For example, if Split has only FillComputeSeq inside,
it will create methods fill and compute. During fill all its sequences will be filled. During compute their results will be
yielded in turn (all results from the first sequence, then from the second, etc). Split with Source sequences will act as
a Source. Of course, Split can be used within a Split.

1.2.6 Context. Performance and safety

Dictionaries in Python are mutable, that is their content can change. If an element stores the current context, that may
be changed by some other element. The simplest example: if your original data has context, it will be changed after
being processed by a sequence.

This is how a typical Run element deals with context. To be most useful, it must be prepared to accept data with and
without context:

class RunEl():
def __init__(self):

self._context = {"subcontext": "el"}

def run(self, flow):
for val in flow:

data, context = lena.flow.get_data_context(val)
... do something ...

(continues on next page)

1.2. Split 21

Lena Documentation, Release 0.6-beta

(continued from previous page)

lena.flow.update_recursively(context, self._context)
yield (new_data, context)

lena.flow.get_data_context(value) splits value into a pair of (data, context). If value contained only data without context,
the context part will be an empty dictionary (therefore it is safe to use get_data_context with any value). If only one
part is needed, lena.flow.get_data or lena.flow.get_context can be used.

If subcontext can contain other elements except el, then to preserve them we call not context.update, but
lena.flow.update_recursively. This function doesn’t overwrite subdictionaries, but only conflicting keys within them.
In this case context.subcontext key will always be set to el, but if self._context.subcontext were a dictionary {“el”:
“el1”}, then all context.subcontext keys (if present) except el would remain.

Usually elements in a Sequence yield computed data and context, and never use or change that again. In Split, however,
several sequences use the same data simultaneously. This is why Split makes a deep copy of the incoming flow in its
buffer. A deep copy of a context is completely independent of the original or its other copies. However, to copy an
entire dictionary requires some computational cost.

Split can be initialized with a keyword argument copy_buf. By default it is True, but can be set to False to disable
deep copy of the flow. This may be a bit faster, but do it only if you are absolutely sure that your analysis will remain
correct.

There are several things in Lena that help against context interference:

• elements change their own context (Write changes context.output and not context.variable),

• if Split has several sequences, it makes a deep copy of the flow before feeding that to them,

• FillCompute and FillRequest elements make a deep copy of context before yielding3.

This is how a FillCompute element is usually organised in Lena:

class MyFillComputeEl():
def __init__(self):

self._val = 0
self._context = {"subcontext": "el"}
self._cur_context = {}

def fill(self, val):
data, context = lena.flow.get_data_context(val)
self._val += data
self._cur_context = context

def compute(self):
context = copy.deepcopy(self._cur_context)
or copy.deepcopy(self._context):
lena.flow.update_recursively(context, self._context)
yield (self._val, context)

During fill the last context is saved. During compute a deep copy of that is made (since compute is called only once,
this can be done without performance loss), and it is updated with self._context.

Performance is not the highest priority in Lena, but it is always nice to have. When possible, optimizations are made.
Performance measurements show that deepcopy can take most time in Lena analysis2. A linear Sequence or Run

3 For framework elements this is obligatory, for user code this is recommended.
2 One can use tutorial/2_split/performance.py to make a quick analysis. To create 3 histograms (like in main4.py example above) for one million

generated events it took 82 seconds in Python 2 on a laptop. The longest total time was spent for copy.deepcopy (20 seconds). For Python 3, PyPy
and PyPy 3 the total time was 71, 23 and 16 seconds. These numbers are approximate (the second measurement for PyPy gave 19 seconds). If we
change Variables into lambdas, add MakeFilename after Histogram and set copy_buf=False in Split, the total time will be 18 seconds for Python 2

22 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

elements don’t do a deep copy of data. If Split contains several sequences, it doesn’t do a deep copy of the flow for the
last sequence. It is possible to circumvent all copying of data in Split to gain more performance at the cost of more
precautions and more streamlined code.

Summary

Several analyses can be performed on one flow using an element Split. It accepts a list of sequences as its first initial-
ization argument.

Since Split divides the flow into buffered slices, elements must be prepared for that. In this part of the tutorial we
introduced the FillCompute and the FillRequest elements. The former yields the results when its compute method is
called. It is supposed that FillCompute is run only once and that it is memory safe (that it reduces data). If an element
can consume much memory, it must be a FillRequest element.

If we add Call elements before and Run and Call elements after our FillCompute or FillRequest elements, we can gen-
eralize them to sequences FillComputeSeq and FillRequestSeq. They are created implicitly during Split initialization.

Variables connect functions with context. They have names and can have LaTeX names, units and other parameters,
which helps to create plots and write output files. Compose corresponds to function composition, while Combine
creates multidimensional variables for multidimensional plots.

If an element has methods with unusual names, adapters can be used to relate them to the framework names. Adapters
are also used to explicitly cast one type of element to another or to implicitly convert an element to an appropriate type
during a sequence initialization.

To be most useful, elements should be prepared to accept values consisting of only data or data with context. To work
safely with a mutable context, a deep copy of that must be made in compute or request. On the other hand, unnecessary
deep copies (in run, fill or __call__) may slightly decrease the performance. Lena allows optimizations if they are
needed.

Exercises

1. Extend the Sum example in this chapter so that it could handle context. Check that it works.

2. In the analysis example main4.py there are two MakeFilename elements. Is it possible to use only one of them?
How?

3. We developed the example main2.py and joined lambda and filename into a Variable. We could also add a name
to the Histogram. Which design decision would be better?

4. What are the consequences of calling compute even for an empty flow?

5. Alexander writes a diploma thesis involving some data analysis and wants to choose a framework for that. He asks
colleagues and professors, and stops at three possible options. One library is easy to use and straight to the point,
and is sufficient for most diploma theses. Another library is very rich and used by seasoned professionals, and
its full power surpasses even its documentation. The third framework doesn’t provide a plenty of mathematical
functions, but promises structured and beautiful code. Which one would you advise?

and 4 seconds for PyPy 3.
This difference may be not important in practice: for example, the author usually deals with data sets of several tens of thousands events, and a

large amount of time is spent to create 2-dimensional plots with pdflatex.

1.2. Split 23

Lena Documentation, Release 0.6-beta

1.3 Answers to exercises

1.3.1 Part 1

Ex. 1

End.run in this case is not a generator. To make it a generator, add a yield statement somewhere. Also note that since
Python 3.7 all StopIteration are considered to be errors according to PEP 479. Use a simple return instead. This is the
implementation in lena.flow:

class End(object):
"""Stop sequence here."""

def run(self, flow):
"""Exhaust all preceding flow and stop iteration
(yield nothing to the following flow).
"""
for val in flow:

pass
return
otherwise it won't be a generator
yield "unreachable"

Ex. 2

>>> def my_generator():
... print("enter my generator")
... yield True
...
>>> results = my_generator()
>>> list(results)
enter my generator
[True]

Ex. 3

An implementation of Count is given below. An important consideration is that there may be several Counts in the
sequence, so give them different names to distinguish.

class Count(object):
"""Count items that pass through.

After the flow is exhausted, add {*name*: count} to the *context*.
"""

def __init__(self, name="counter"):
"""*name* is this counter's name."""
self._name = name
self._count = 0
self._cur_context = {}

(continues on next page)

24 Chapter 1. Tutorial

Lena Documentation, Release 0.6-beta

(continued from previous page)

def run(self, flow):
"""Yield incoming values and increase counter.

When the incoming flow is exhausted,
update last value's context with *(count, context)*.

If the flow was empty, nothing is yielded
(so *count* can't be zero).
"""
try:

prev_val = next(flow)
except StopIteration:

otherwise it will be an error since PEP 479
https://stackoverflow.com/a/51701040/952234
return
raise StopIteration

count = 1
for val in flow:

yield prev_val
count += 1
prev_val = val

val = prev_val
data, context = lena.flow.get_data(val), lena.flow.get_context(val)
context.update({self._name: count})
yield (data, context)

Ex. 4

A simple output function could be the following:

def output(output_dir="output"):
write = lena.output.Write(output_dir)
s = lena.core.Sequence(

lena.output.ToCSV(),
write,
lena.context.Context(),
lena.output.RenderLaTeX(), # initialize properly here
write,
lena.output.LaTeXToPDF(),
lena.output.PDFToPNG(),

)
return s

Then place output() in a sequence, and new initialized elements will be put there.

This approach is terse, but less flexible and explicit. In practice verbosity of several output elements was never a
problem for the author.

1.3. Answers to exercises 25

Lena Documentation, Release 0.6-beta

Ex. 5

The author is unaware of a simple for a user way to stop a function and resume it at the given point. Inform the author
if you know better answers to any of these exercises.

Mikhail Zelenyi gives this explanation (translated from Russian):

There are two types of models: push and pull. If you have a sequence, then in the case of a push model the calculations
are initiated by the first member of the sequence, which pushes data further. In this case a fork can be done easily, just
at a certain moment it pushes data not into one sequence, but into two.

In the case of a pull model the calculations are initiated by the last member of the sequence. Consequently, if we want
to branch the sequence, we need to think what to do: to start only when all consumers asked, to use a buffer, or to start
with one consumer and to push data into the others conforming to the push model.

1.3.2 Part 2

Ex. 1

This is the Sum implementation from lena.math:

class Sum(object):
"""Calculate sum of input values."""

def __init__(self, start=0):
"""*start* is the initial value of sum."""
start is similar to Python's builtin *sum* start.
self._start = start
self.reset()

def fill(self, value):
"""Fill *self* with *value*.

The *value* can be a *(data, context)* pair.
The last *context* value (considered empty if missing)
sets the current context.
"""
data, context = lena.flow.get_data_context(value)
self._sum += data
self._cur_context = context

def compute(self):
"""Calculate the sum and yield.

If the current context is not empty, yield *(sum, context)*.
Otherwise yield only *sum*.
"""
if not self._cur_context:

yield self._sum
else:

yield (self._sum, copy.deepcopy(self._cur_context))

def reset(self):
"""Reset sum and context.

(continues on next page)

26 Chapter 1. Tutorial

https://habr.com/ru/post/490518/#comment_21342580

Lena Documentation, Release 0.6-beta

(continued from previous page)

Sum is reset to the *start* value and context to {}.
"""
self._sum = copy.deepcopy(self._start)
self._cur_context = {}

Ex. 2

Delete the first MakeFilename and change the second one to

MakeFilename("{{variable.particle}}/{{variable.name}}")

Ex. 3

We believe that the essence of data is captured in the function with which it was obtained. Histogram is just its pre-
sentation. It may be tempting to name a histogram just for convenience, but a general MakeFilename would be more
powerful.

Functional programming suggests that larger functions should be decomposed into smaller ones, while object-oriented
design praises code cohesion. The decisions above were made by choosing between these principles. There are cases
when a histogram is data itself. In such situations, however, the final result is often not a histogram but a function of
that, like a mean or a mode (which again suggests a different name).

Ex. 4

In part 1 of the tutorial there was introduced an element End, which stops the flow at its location. However, if there
are Histograms in the following flow, they will be yielded even if nothing was filled into them. Empty histogram is a
legitimate histogram state. It may be also filled, but the result may fall out of the histogram’s range. It is possible to
write a special element if needed to check whether the flow was empty.

In the next chapter we will present a specific analysis during which a histogram may not be filled, but it must be
produced. A FillCompute element is more general than a histogram (which we use here just for a concrete example).

Note also that if a histogram was not filled, preceding variables weren’t called. The histogram will have no context,
probably won’t have a name and won’t be plotted correctly. Take an empty flow into account when creating your own
FillCompute elements.

Ex. 5

It depends on the student’s priorities. If he wants to finish the diploma never to return to programming, or if he has a lot
of work to do apart from writing code, the fastest option might be the best. General algorithms have a more complicated
interface. However, if one decides to rely upon a “friendly” library, there is a risk that the programmer will have to
rewrite all code when more functionality becomes needed.

Architectural choices rise for middle-sized or large projects. If the student’s personal code becomes large and more time
is spent on supporting and extending that, it may be a good time to define the architecture. Here the author estimates
“large” programs to start from one thousand lines.

Another distinction is that when using a library one learns how to use a library. When using a good framework, one
learns how to write good code. Many algorithms in programming are simple, but to choose a good design may be much
more difficult, and to learn how to create good programs yourself may take years of studying and experience. When
you feel difficulties with making programming decisions, it’s time to invest into design skills.

1.3. Answers to exercises 27

Lena Documentation, Release 0.6-beta

28 Chapter 1. Tutorial

CHAPTER

TWO

REFERENCE

2.1 Context

Elements:

Context([d, formatter]) Dictionary with easy-to-read formatting.
UpdateContext(subcontext, update[, value, ...]) Update context of passing values.

Functions:

contains(d, s) Check that a dictionary d contains a subdictionary de-
fined by a string s.

difference(d1, d2[, level]) Return a dictionary with items from d1 not contained in
d2.

format_context(format_str) Create a function that formats a context using the given
string.

get_recursively(d, keys[, default]) Get value from a dictionary d recursively.
intersection(*dicts, **kwargs) Return a dictionary, such that each of its items are con-

tained in all dicts (recursively).
str_to_dict(s[, value]) Create a dictionary from a dot-separated string s.
str_to_list(s) Like str_to_dict(), but return a flat list.
to_string(d) Convert a dictionary d to a string.
update_nested(key, d, other) Update d[key] with the other dictionary preserving data.
update_recursively(d, other[, value]) Update dictionary d with items from other dictionary.

2.1.1 Elements

class Context(d=None, formatter=None)
Bases: dict

Dictionary with easy-to-read formatting.

Context provides a better representation for context. Example:

>>> from lena.context import Context
>>> c = Context({"1": 1, "2": {"3": 4}})
>>> print(c)
{

"1": 1,
(continues on next page)

29

Lena Documentation, Release 0.6-beta

(continued from previous page)

"2": {
"3": 4

}
}

Initialize from a dictionary d (empty by default).

Representation is defined by the formatter. That must be a callable accepting a dictionary and returning a string.
The default is json.dumps.

All public attributes of a Context can be retrieved or set using dot notation (for example, context[“data_path”]
is equal to context.data_path). Only one level of nesting is accessible using dot notation.

Tip: JSON and Python representations are different. In particular, JSON True is written as lowercase true. To
convert JSON back to Python, use json.loads(string).

If the attribute to be retrieved is missing, LenaAttributeError is raised. An attempt to access a private attribute
raises AttributeError.

__call__(value)
Convert value’s context to Context on the fly.

If the value is a (data, context) pair, convert its context part to Context. If the value doesn’t contain a
context, it is created as an empty Context.

When a Context is used as a sequence element, its initialization argument d has no effect on the produced
values.

class UpdateContext(subcontext, update, value=False, default=<object object>, skip_on_missing=False,
raise_on_missing=False, recursively=True)

Update context of passing values.

subcontext is a string representing the part of context to be updated (for example, “output.plot”). subcontext
must be non-empty.

update will become the value of subcontext during __call__(). It can be one of three different types:

• a simple value (not a string),

• a context formatting string,

• a context value (a string in curly braces).

A context formatting string is any string with arguments enclosed in double braces (for example, “{{vari-
able.type}}_{{variable.name}}”). Its argument values will be filled from context during __call__(). If a
formatting argument is missing in context, it will be substituted with an empty string.

To set update to a value from context (not a string), the keyword argument value must be set to True and the
update format string must be a non-empty single expression in double braces (“{{variable.compose}}”).

If update corresponds to a context value and a formatting argument is missing in the context, LenaKeyError
will be raised unless a default is set. In this case default will be used for the update value.

If update is a context formatting string, default keyword argument can’t be used. To set a default value other than
an empty string, use a jinja2 filter. For example, if update is “{{variable.name|default(‘x’)}}”, then update will
be set to “x” both if context.variable.name is missing and if context.variable is missing itself.

Other variants to deal with missing context values are:

• to skip update (don’t change the context), set by skip_on_missing, or

30 Chapter 2. Reference

https://docs.python.org/3/library/json.html

Lena Documentation, Release 0.6-beta

• to raise LenaKeyError (set by raise_on_missing).

Only one of default, skip_on_missing or raise_on_missing can be set, otherwise LenaValueError is raised.
None of these options can be used if update is a simple value.

If recursively is True (default), not overwritten existing values of subcontext are preserved. Otherwise, all
existing values of subcontext (at its lowest level) are removed. See also update_recursively().

Example:

>>> from lena.context import UpdateContext
>>> make_scatter = UpdateContext("output.plot", {"scatter": True})
>>> # call directly
>>> make_scatter(((0, 0), {}))
((0, 0), {'output': {'plot': {'scatter': True}}})
>>> # or use in a sequence

If subcontext is not a string, LenaTypeError is raised. If it is empty, LenaValueError is raised. If value is
True, braces can be only the first two and the last two symbols of update, otherwise LenaValueError is raised.

__call__(value)
Update value’s context.

If the value is updated, subcontext is always created (also if the value contains no context).

LenaKeyError is raised if raise_on_missing is True and the update argument is missing in value’s context.

2.1.2 Functions

contains(d, s)
Check that a dictionary d contains a subdictionary defined by a string s.

True if d contains a subdictionary that is represented by s. Dots in s mean nested subdictionaries. A string
without dots means a key in d.

Example:

>>> d = {'fit': {'coordinate': 'x'}}
>>> contains(d, "fit")
True
>>> contains(d, "fit.coordinate.x")
True
>>> contains(d, "fit.coordinate.y")
False

If the most nested element of d to be compared with s is not a string, its string representation is used for compar-
ison. See also str_to_dict().

difference(d1, d2, level=-1)
Return a dictionary with items from d1 not contained in d2.

level sets the maximum depth of recursion. For infinite recursion, set that to -1. For level 1, if a key is present
both in d1 and d2 but has different values, it is included into the difference. See intersection() for more
details.

d1 and d2 remain unchanged. However, d1 or some of its subdictionaries may be returned directly. Make a deep
copy of the result when appropriate.

2.1. Context 31

Lena Documentation, Release 0.6-beta

New in version 0.5: add keyword argument level.

format_context(format_str)
Create a function that formats a context using the given string.

It is recommended to use jinja2.Template. Use this function only if you don’t have jinja2.

format_str is a Python format string with double braces instead of single ones. It must contain all non-empty
replacement fields, and only simplest formatting without attribute lookup. Example:

>>> f = format_context("{{x}}")
>>> f({"x": 10})
'10'

When calling format_context, arguments are bound and a new function is returned. When called with a context,
its keys are extracted and formatted in format_str.

Keys can be nested using a dot, for example:

>>> f = format_context("{{x.y}}_{{z}}")
>>> f({"x": {"y": 10}, "z": 1})
'10_1'

This function does not work with unbalanced braces. If a simple check fails, LenaValueError is raised. If
format_str is not a string, LenaTypeError is raised. All other errors are raised only during formatting. If
context doesn’t contain the needed key, LenaKeyError is raised. Note that string formatting can also raise a
ValueError, so it is recommended to test your formatters before using them.

get_recursively(d, keys, default=<object object>)
Get value from a dictionary d recursively.

keys can be a list of simple keys (strings), a dot-separated string or a dictionary with at most one key at each
level. A string is split by dots and used as a list. A list of keys is searched in the dictionary recursively (it
represents nested dictionaries). If any of them is not found, default is returned if “default” is given, otherwise
LenaKeyError is raised.

If keys is empty, d is returned.

Examples:

>>> context = {"output": {"latex": {"name": "x"}}}
>>> get_recursively(context, ["output", "latex", "name"], default="y")
'x'
>>> get_recursively(context, "output.latex.name")
'x'

Note: Python’s dict.get in case of a missing value returns None and never raises an error. We implement it
differently, because it allows more flexibility.

If d is not a dictionary or if keys is not a string, a dict or a list, LenaTypeError is raised. If keys is a dictionary
with more than one key at some level, LenaValueError is raised.

intersection(*dicts, **kwargs)
Return a dictionary, such that each of its items are contained in all dicts (recursively).

dicts are several dictionaries. If dicts is empty, an empty dictionary is returned.

32 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

A keyword argument level sets maximum number of recursions. For example, if level is 0, all dicts must be equal
(otherwise an empty dict is returned). If level is 1, the result contains those subdictionaries which are equal. For
arbitrarily nested subdictionaries set level to -1 (default).

Example:

>>> from lena.context import intersection
>>> d1 = {1: "1", 2: {3: "3", 4: "4"}}
>>> d2 = {2: {4: "4"}}
>>> # by default level is -1, which means infinite recursion
>>> intersection(d1, d2) == d2
True
>>> intersection(d1, d2, level=0)
{}
>>> intersection(d1, d2, level=1)
{}
>>> intersection(d1, d2, level=2)
{2: {4: '4'}}

This function always returns a dictionary or its subtype (copied from dicts[0]). All values are deeply copied. No
dictionary or subdictionary is changed.

If any of dicts is not a dictionary or if some kwargs are unknown, LenaTypeError is raised.

str_to_dict(s, value=<object object>)
Create a dictionary from a dot-separated string s.

If the value is provided, it becomes the value of the deepest key represented by s.

Dots represent nested dictionaries. If s is non-empty and value is not provided, then s must have at least two
dot-separated parts (“a.b”), otherwise LenaValueError is raised. If a value is provided, s must be non-empty.

If s is empty, an empty dictionary is returned.

Examples:

>>> str_to_dict("a.b.c d")
{'a': {'b': 'c d'}}
>>> str_to_dict("output.changed", True)
{'output': {'changed': True}}

str_to_list(s)
Like str_to_dict(), but return a flat list.

If the string s is empty, an empty list is returned. This is different from str.split: the latter would return a list with
one empty string. Contrarily to str_to_dict(), this function allows an arbitrary number of dots in s (or none).

to_string(d)
Convert a dictionary d to a string.

Example:

>>> d = {"a": 1, "b": {"c": 3}}
>>> to_string(d)
'{"a":1,"b":{"c":3}}'

d can have nested subdictionaries, lists and other JSON-serializable items. d keys are sorted.

2.1. Context 33

Lena Documentation, Release 0.6-beta

Note: The returned representation is terse and can be used for hashing (though more optimal solutions for that
may exist). d can be not only a dictionary, but for example to hash a list one can simply convert it to a tuple. Use
Context for a human-friendlier formatting. Use json.dumps for more flexibility.

If an item is unserializable (for example, d contains a set), LenaValueError is raised.

New in version 0.6.

update_nested(key, d, other)
Update d[key] with the other dictionary preserving data.

If d doesn’t contain the key, it is updated with {key: other}. If d contains the key, d[key] is inserted into other[key]
(so that it is not overriden). If other contains key (and possibly more nested key-s), then d[key] is inserted into
the deepest level of other.key.key. . . Finally, d[key] becomes other.

Example:

>>> context = {"variable": {"name": "x"}}
>>> new_var_context = {"name": "n"}
>>> update_nested("variable", context, copy.deepcopy(new_var_context))
>>> context == {'variable': {'name': 'n', 'variable': {'name': 'x'}}}
True
>>>
>>> update_nested("variable", context, {"name": "top"})
>>> context == {
... 'variable': {'name': 'top',
... 'variable': {'name': 'n', 'variable': {'name': 'x'}}}
... }
True

other is modified in general. Create that on the fly or use copy.deepcopy when appropriate.

Recursive dictionaries (containing references to themselves) are strongly discouraged and meaningless when
nesting. If other[key] is recursive, LenaValueError may be raised.

update_recursively(d, other, value=<object object>)
Update dictionary d with items from other dictionary.

other can be a dot-separated string. In this case str_to_dict() is used to convert it and the value to a dictionary.
A value argument is allowed only when other is a string, otherwise LenaValueError is raised.

Existing values are updated recursively, that is including nested subdictionaries. Example:

>>> d1 = {"a": 1, "b": {"c": 3}}
>>> d2 = {"b": {"d": 4}}
>>> update_recursively(d1, d2)
>>> d1 == {'a': 1, 'b': {'c': 3, 'd': 4}}
True
>>> # Usual update would have made d1["b"] = {"d": 4}, erasing "c".

Non-dictionary items from other overwrite those in d:

>>> update_recursively(d1, {"b": 2})
>>> d1 == {'a': 1, 'b': 2}
True

34 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

2.2 Core

Sequences:

Sequence(*args) Sequence of elements, such that next takes input from
the previous during run.

Source(*args) Sequence with no input flow.
FillComputeSeq(*args) Sequence with one FillCompute element.
FillRequestSeq(*args, **kwargs)

Deprecated since version 0.6.

Split(seqs[, bufsize, copy_buf]) Split data flow and run analysis in parallel.

Adapters:

Call(el[, call]) Adapter to provide __call__(value) method.
FillCompute(el[, fill, compute]) Adapter for a FillCompute element.
FillInto(el[, fill_into, explicit]) Adapter for a FillInto element.
FillRequest(el[, bufsize, reset, ...])

Deprecated since version 0.6.

Run(el[, run]) Adapter for a Run element.
SourceEl(el[, call]) Adapter to provide __call__() method.

Exceptions:

LenaAttributeError

LenaEnvironmentError The base class for exceptions that can occur outside the
Python system, like IOError or OSError.

LenaException Base class for all Lena exceptions.
LenaIndexError

LenaKeyError

LenaRuntimeError Raised when an error does not belong to other cate-
gories.

LenaStopFill Signal that no more fill is accepted.
LenaTypeError Incorrect type.
LenaValueError Wrong value.

2.2. Core 35

Lena Documentation, Release 0.6-beta

2.2.1 Sequences

Lena combines calculations using sequences. Sequences consist of elements. Basic Lena sequences and element types
are defined in this module.

class Sequence(*args)
Sequence of elements, such that next takes input from the previous during run.

Sequence.run() must accept input flow. For sequence with no input data use Source.

args are objects which implement a method run(flow) or callables.

args can be a single tuple of such elements. In this case one doesn’t need to check argument type when initializing
a Sequence in a general function.

For more information about the run method and callables, see Run.

run(flow)
Generator that transforms the incoming flow.

If this Sequence is empty, the flow passes unaltered, but with a small change. This function converts input
flow to an iterator, so that it always contains both iter and next methods. This is done for the flow entering
the first sequence element and exiting from the sequence.

class Source(*args)
Sequence with no input flow.

First argument is the initial element with no input flow. It can be an an object with a generator function __call__()
or an iterable. Following arguments (if present) form a sequence of elements, each accepting computational flow
from the previous element.

>>> from lena.flow import CountFrom, Slice
>>> s = Source(CountFrom(), Slice(5))
>>> # iterate in a cycle
>>> for i in s():
... if i == 5:
... break
... print(i, end=" ")
0 1 2 3 4
>>> # if called twice, results depend on the generator
>>> list(s()) == list(range(5, 10))
True

For a sequence that transforms the incoming flow use Sequence.

__call__()

Generate flow.

class FillComputeSeq(*args)
Sequence with one FillCompute element.

Input flow is preprocessed with the Sequence before the FillCompute element, then it fills the FillCompute ele-
ment.

When the results are computed, they are postprocessed with the Sequence after that element.

args form a sequence with a FillCompute element.

If args contain several FillCompute elements, only the first one is chosen (the subsequent ones are used as simple
Run elements). To change that, explicitly cast the first element to FillInto.

36 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

If FillCompute element was not found, or if the sequences before and after that could not be correctly initialized,
LenaTypeError is raised.

compute()

Compute the results and yield.

If the sequence after FillCompute is not empty, it postprocesses the results yielded from FillCompute ele-
ment.

fill(value)
Fill self with value.

If the sequence before FillCompute is not empty, it preprocesses the value before filling FillCompute.

class FillRequestSeq(*args, **kwargs)
Deprecated since version 0.6: inside a Split element this sequence is a subtype of a simple Sequence.

Sequence with one FillRequest element.

Input flow is preprocessed with the sequence before the FillRequest element, then it fills the FillRequest element.

When the results are yielded from the FillRequest, they are postprocessed with the elements that follow it.

args form a sequence with a FillRequest element.

If args contains several FillRequest elements, only the first one is chosen (the subsequent ones are used as simple
Run elements). To change that, explicitly cast the first element to FillInto.

kwargs can contain bufsize or reset. See FillRequest for more information on them. By default bufsize is 1.

If FillRequest element was not found, the sequences could not be correctly initialized, or unknown keyword
arguments were received, LenaTypeError is raised.

fill(value)
Fill self with value.

If the sequence before FillRequest is not empty, it preprocesses the value before filling FillRequest.

request()

Request the results and yield.

If the sequence after FillRequest is not empty, it postprocesses the results yielded from the FillRequest
element.

reset()

Reset the FillRequest element.

class Split(seqs, bufsize=1000, copy_buf=True)
Split data flow and run analysis in parallel.

seqs must be a list of Sequence, Source, FillComputeSeq or FillRequestSeq sequences. If seqs is empty, Split
acts as an empty Sequence and yields all values it receives.

bufsize is the size of the buffer for the input flow. If bufsize is None, whole input flow is materialized in the buffer.
bufsize must be a natural number or None.

copy_buf sets whether the buffer should be copied during run(). This is important if different sequences can
change input data and thus interfere with each other.

Common type:
If each sequence from seqs has a common type, Split creates methods corresponding to this type. For
example, if each sequence is FillCompute, Split creates methods fill and compute and can be used as a
FillCompute sequence. fill fills all its subsequences (with copies if copy_buf is True), and compute yields

2.2. Core 37

Lena Documentation, Release 0.6-beta

values from all sequences in turn (as would also do request or Source.__call__). Common type is not
implemented for Call element.

In case of wrong initialization arguments, LenaTypeError or LenaValueError is raised.

__call__()

Each initialization sequence generates flow. After its flow is empty, next sequence is called, etc.

This method is available only if each self sequence is a Source, otherwise runtime LenaAttributeError
is raised.

run(flow)
Iterate input flow and yield results.

The flow is divided into subslices of bufsize. Each subslice is processed by sequences in the order of their
initializer list.

If a sequence is a Source, it doesn’t accept the incoming flow, but produces its own complete flow and
becomes inactive (is not called any more).

A FillRequestSeq is filled with the buffer contents. After the buffer is finished, it yields all values from
request().

A FillComputeSeq is filled with values from each buffer, but yields values from compute only after the
whole flow is finished.

A Sequence is called with run(buffer) instead of the whole flow. The results are yielded for each buffer (and
also if the flow was empty). If the whole flow must be analysed at once, don’t use such a sequence in Split.

If the flow was empty, each call, compute, request or run is called nevertheless.

If copy_buf is True, then the buffer for each sequence except the last one is a deep copy of the current buffer.

2.2.2 Adapters

Adapters allow to use existing objects as Lena core elements.

Adapters can be used for several purposes:

• provide an unusual name for a method (Run(my_obj, run=”my_run”)).

• hide unused methods to prevent ambiguity.

• automatically convert objects of one type to another in sequences (FillCompute to Run).

• explicitly cast object of one type to another (FillRequest to FillCompute).

Example:

>>> class MyEl(object):
... def my_run(self, flow):
... for val in flow:
... yield val
...
>>> my_run = Run(MyEl(), run="my_run")
>>> list(my_run.run([1, 2, 3]))
[1, 2, 3]

38 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

class Call(el, call=<object object>)
Adapter to provide __call__(value) method.

Name of the actually called method can be customized during the initialization.

The method __call__(value) is a simple (preferably pure) function, which accepts a value and returns its trans-
formation.

Element el must contain a callable method call or be callable itself.

If call method name is not provided, it is checked whether el is callable itself.

If Call failed to instantiate with el and call, LenaTypeError is raised.

__call__(value)
Transform the value and return.

class FillCompute(el, fill='fill', compute='compute')
Adapter for a FillCompute element.

A FillCompute element has methods fill(value) and compute().

Method names can be customized through fill and compute keyword arguments during the initialization.

FillCompute can be explicitly cast from FillRequest. In this case compute is request.

If callable methods fill and compute or request were not found, LenaTypeError is raised.

compute()

Yield computed values.

fill(value)
Fill self with value.

class FillInto(el, fill_into=<object object>, explicit=True)
Adapter for a FillInto element.

Element el must implement fill_into method, be callable or be a Run element.

If no fill_into argument is provided, then fill_into method is searched, then __call__, then run. If none of them
is found and callable, LenaTypeError is raised.

Note that callable elements and elements with fill_into method have different interface. If the el is callable, it is
assumed to be a simple function, which accepts a single value and transforms that, and the result is filled into the
element by this adapter. fill_into method, on the contrary, takes two arguments (element and value) and fills the
element itself. This allows to use lambdas directly in FillInto.

A Run element is converted to FillInto this way: for each value the el runs a flow consisting of this one value and
fills the results into the output element. This can be done only if explicit is True.

fill_into(element, value)
Fill value into an element.

Value is transformed by the initialization element before filling el.

Element must provide a fill method.

class FillRequest(el, bufsize=1, reset=None, buffer_input=None, buffer_output=None,
yield_on_remainder=False, fill='fill', request='request', reset_name='reset')

Deprecated since version 0.6: inside Split this element can be implemented by a simple Run element.

Adapter for a FillRequest element.

2.2. Core 39

Lena Documentation, Release 0.6-beta

A FillRequest element slices the flow during fill and yields results for each chunk during request. It can also call
reset after each request.

Names for actual fill, request and reset methods can be provided during initialization (the latter is set through
reset_name).

FillRequest can be initialized from a FillCompute element. If a callable request method was not found, el must
have a method compute. request in this case is compute.

FillRequest can also be initialized from a Run element. In that case el is not required to have fill, compute or
reset methods (and FillRequest will not have such missing methods). FillRequest implements run method that
splits the flow into subslices of bufsize values and feeds them to the run method of el.

Since we require no less than bufsize values (except yield_on_remainder is True), we need to store either bufsize
values of the incoming flow or all values produced by el.run or el.request for each slice. This is set by buffer_input
or buffer_output. One and only one of them must be True. For example, if the element receives file names and
produces data from them, it would be wise to buffer input. If the element receives much data and produces a
histogram, one should buffer output.

If a keyword argument reset is True, el must have a method reset_name, and in this case reset() is called
after each request() (including those during run()). In general, Run elements have no reset methods, but for
FillCompute elements reset must be set explicitly.

If yield_on_remainder is True, then the output will be yielded even if the element was filled less than bufsize
times (but at least once). In that case no internal buffers are used during run() and corresponding attributes are
not checked.

Attributes

bufsize is the maximum size of subslices during run.

bufsize must be a natural number, otherwise LenaValueError is raised. If callable fill and request methods
were not found, or FillRequest could not be derived from FillCompute, or if reset is True, but el has no method
reset, LenaTypeError is raised.

Changed in version 0.5: add keyword arguments yield_on_remainder, buffer_input, buffer_output, reset_name.
Require explicit reset for FillCompute elements.

fill(value)
Fill el with value.

If more than bufsize values were filled, incoming values are stored in a buffer (if buffer_input is True) or,
otherwise, the output of el.request is stored in a buffer, until it is requested.

request()

Yield results (if they are available) and possibly reset.

If input or output buffers were filled, all their contents are processed and yielded.

reset()

Reset el (ignoring the initialization setting).

run(flow)
Process the flow slice by slice.

fill each value from a subslice of flow of bufsize length, then yield results from request. Repeat until the
flow is exhausted.

If fill was not called even once (flow was empty), nothing is yielded, because bufsize values were not ob-
tained (in contrast to FillCompute, for which output for an empty flow is reasonable). The last slice may
contain less than bufsize values. If there were any and if yield_on_remainder is True, request will be called
for that.

40 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

class Run(el, run=<object object>)
Adapter for a Run element.

Name of the method run can be customized during initialization.

If run argument is supplied, el must be None or it must have a callable method with name given by run.

If run keyword argument is missing, then el is searched for a method run. If that is not found, a type cast is
attempted.

A Run element can be initialized from a Call or a FillCompute element.

A callable element is run as a transformation function, which accepts single values from the flow and returns
their transformations for each value.

A FillCompute element is run the following way: first, el.fill(value) is called for the whole flow. After the flow
is exhausted, el.compute() is called.

It is possible to initialize Run using a generator function without an element. To do that, set the element to None:
Run(None, run=<my_function>).

If the initialization failed, LenaTypeError is raised.

Run is used implicitly during the initialization of Sequence.

run(flow)
Yield transformed values from the incoming flow.

class SourceEl(el, call=<object object>)
Adapter to provide __call__() method. Name of the actually called method can be customized during the initial-
ization.

The __call__() method is a generator, which yields values. It doesn’t accept any input flow.

Element el must be callable or iterable, or contain a callable method call.

If SourceEl failed to instantiate with el and call, LenaTypeError is raised.

__call__()

Yield generated values.

2.2.3 Exceptions

All Lena exceptions are subclasses of LenaException and corresponding Python exceptions (if they exist).

exception LenaAttributeError

Bases: LenaException, AttributeError

exception LenaEnvironmentError

Bases: LenaException, OSError

The base class for exceptions that can occur outside the Python system, like IOError or OSError.

exception LenaException

Bases: Exception

Base class for all Lena exceptions.

exception LenaIndexError

Bases: LenaException, IndexError

2.2. Core 41

Lena Documentation, Release 0.6-beta

exception LenaKeyError

Bases: LenaException, KeyError

exception LenaNotImplementedError

Bases: LenaException, NotImplementedError

exception LenaRuntimeError

Bases: LenaException, RuntimeError

Raised when an error does not belong to other categories.

exception LenaStopFill

Bases: LenaException

Signal that no more fill is accepted.

Analogous to StopIteration, but control flow is reversed.

exception LenaTypeError

Bases: LenaException, TypeError

Incorrect type.

Typically used during initialization of Lena elements. Use LenaValueError for errors from values from the
flow.

exception LenaValueError

Bases: LenaException, ValueError

Wrong value.

It is also used for values from the flow, even when they have a wrong type.

exception LenaZeroDivisionError

Bases: LenaException, ZeroDivisionError

2.3 Flow

Elements:

Cache(filename[, recompute, method, protocol]) Cache the flow passing through.
Count([name, count]) Count items that pass through.
DropContext(*args) Sequence that transforms (data, context) flow so that

only data remains in the inner sequence.
End() Stop sequence here.
Filter(selector) Filter values from flow.
Print([before, sep, end, transform]) Print values passing through.
Progress([name, format]) Print progress (how much data was processed and re-

mains).
RunIf (select, *args) Run a sequence only for selected values.

Functions:

42 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

get_context(value) Get context from a possible (data, context) pair.
get_data(value) Get data from value (a possible (data, context) pair).
get_data_context(value) Get (data, context) from value (a possible (data, context)

pair).
seq_map(seq, container[, one_result]) Map Lena Sequence seq to the container.

Group plots:

GroupBy([group_by, merge]) Group values.
GroupPlots(group_by[, select, transform, ...])

Deprecated since version 0.6.

group_plots(group) Return data parts of the group and set context["group"]
to their intersection.

GroupScale(scale_to[, allow_zero_scale, ...]) Scale a group of data.
MapGroup(*seq, **map_scalars) Apply a sequence to groups.
Selector(selector[, raise_on_error]) A boolean function on values.
And(selectors[, raise_on_error]) And-test of multiple selectors.
Or(selectors[, raise_on_error]) Or-test of multiple selectors.
Not(selector[, raise_on_error]) Negate a selector.

Iterators:

Chain(*iterables) Chain generators.
CountFrom([start, step]) Generate numbers from start to infinity, with step be-

tween values.
ISlice(*args, **kwargs)

Deprecated since version 0.4.

Reverse() Reverse the flow (yield values from last to first).
Slice(*args) Slice data flow from start to stop with step.

Split into bins:

Since Lena 0.5 moved to Structures.

2.3.1 Elements

Elements form Lena sequences. This group contains miscellaneous elements, which didn’t fit other categories.

class Cache(filename, recompute=False, method='cPickle', protocol=2)
Cache the flow passing through.

On the first run, dump the whole flow to a file (and yield the flow unaltered). On subsequent runs, load the flow
from that file in the original order.

Example:

s = Source(
ReadFiles(),
ReadEvents(),
MakeHistograms(),

(continues on next page)

2.3. Flow 43

Lena Documentation, Release 0.6-beta

(continued from previous page)

Cache("histograms.pkl"),
MakeStats(),
Cache("stats.pkl"),

)

If stats.pkl exists, Cache will read the data from that file and no other processing will be done. If the stats.pkl
cache doesn’t exist, but the cache for histograms exists, it will be used and no previous processing (from ReadFiles
to MakeHistograms) will occur. If both caches were not filled yet, processing will go as usual.

Only pickleable objects can be cached (otherwise a pickle.PickleError will be raised).

Warning: The pickle module is not secure against erroneous or maliciously constructed data. Never unpickle
data from an untrusted source.

filename is the name of file where to store the cache. It can be given .pkl extension.

If recompute is True, an existing cache will always be overwritten. This option is typically used if one wants to
define cache behaviour from the command line.

method can be pickle or cPickle (faster pickle). For Python 3 they are same.

protocol is pickle protocol. Version 2 is the highest supported by Python 2. Version 0 is “human-readable” (as
noted in the documentation). 3 is recommended if compatibility between Python 3 versions is needed. 4 was
added in Python 3.4. It adds support for very large objects, pickling more kinds of objects, and some data format
optimizations.

static alter_sequence(seq)
If the Sequence seq contains a Cache, which has an up-to-date cache, a Source is built based on the
flattened seq and returned. Otherwise the seq is returned unchanged.

cache_exists()

Return True if file with cache exists and is readable.

If recompute was True during the initialization, pretend that cache does not exist (return False).

drop_cache()

Remove file with cache if that exists, pass otherwise.

If cache exists and is readable, but could not be deleted, LenaEnvironmentError is raised.

run(flow)
Load cache or fill it.

If we can read filename, load flow from there. Otherwise use the incoming flow and fill the cache. All
loaded or passing items are yielded.

class Count(name='count', count=0)
Count items that pass through.

Example:

>>> flow = [0, 1, 2]
>>> c = Count("my_counter")
>>> list(c.run(iter(flow))) == [
... 0, 1, (2, {'my_counter': 3})
...]
True

44 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

name is this counter’s name (added to context). One can use the default name if Count is filled, but it is recom-
mended to provide a meaningful name in a Run element.

count is the initial counter. It is added to all countings. It is set to 0 during reset().

name and count are public attributes.

compute()

Yield (count, context).

context is taken from the last filled value and is updated with {self.name: self.count}.

fill(value)
Increase count and set current context from value.

fill_into(element, value)
Fill element with value and increase count.

value context is updated with {self.name: self.count}.

element must have a fill(value) method.

reset()

Set count to zero. Clear current context.

run(flow)
Yield incoming values and increase count.

After the flow is exhausted, update last value’s context with {self.name: self.count}.

If the flow was empty, nothing is yielded (so count can be zero only from compute()).

class DropContext(*args)
Sequence that transforms (data, context) flow so that only data remains in the inner sequence. Context is restored
outside DropContext.

DropContext works for most simple cases as a Sequence, but may not work in more advanced circumstances. For
example, since DropContext is not transparent, Split can’t judge whether it has a FillCompute element inside,
and this may lead to errors in the analysis. It is recommended to provide context when possible.

*args will form a Sequence.

run(flow)
Run the sequence without context, and generate output flow restoring the context before DropContext.

If the sequence adds a context, the returned context is updated with that.

class End

Stop sequence here.

run(flow)
Exhaust all preceding flow and stop iteration (yield nothing to the following flow).

class Filter(selector)
Filter values from flow.

selector is a boolean function. If it returns True, the value passes Filter. If selector is not callable, it is
converted to a Selector. If the conversion could not be done, LenaTypeError is raised.

Note: Filter appeared in Lena only in version 0.4. There may be better alternatives to using this element:

2.3. Flow 45

Lena Documentation, Release 0.6-beta

• don’t produce values that you will discard later. If you want to select data from a specific file, read only
that file.

• use a custom class. SelectPosition(“border”) is more readable and maintainable than a Filter with many
conditions, and it is also more cohesive if you group several options like “center” or “top” in a single place.
If you make a selection, it can be useful to add information about that to the context (and Filter does not
do that).

This doesn’t mean that we recommend against this class: sometimes it can be quick and explicit, and if one’s
class name provides absolutely no clue what it does, a general Filter would be more readable.

New in version 0.4.

fill_into(element, value)
Fill value into an element if selector(value) is True.

Element must have a fill(value) method.

run(flow)
Yield values from the flow for which the selector is True.

class Print(before='', sep='', end='\n', transform=None)
Print values passing through.

before is a string appended before the first element in the item (which may be a container).

sep separates elements, end is appended after the last element.

transform is a function which transforms passing items (for example, it can select its specific fields).

__call__(value)
Print and return value.

class Progress(name='', format='')
Print progress (how much data was processed and remains).

name, if set, customizes the output with the collective name of values being processed (for example, “events”).

format is a formatting string for the output. It will be passed keyword arguments percent, index, total and name.

Use Progress before a large processing. For example, if you have files with much data, put this element after
generating file names, but before reading files. To print indices without reading the whole flow, use CountFrom
and Print.

Progress is estimated based on the number of items processed by this element. It does not take into account the
creation of final plots or the difference in the processing time for different values.

Warning: To measure progress, the whole flow is consumed.

run(flow)
Consume the flow, then yield values one by one and print progress.

class RunIf(select, *args)
Run a sequence only for selected values.

Note: In general, different flows are transformed to common data types (like histograms). In some compli-
cated analyses (like in SplitIntoBins) there can appear values of very different types, for which additional
transformation must be run. Use this element in such cases.

46 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

RunIf is similar to Filter, but the latter can be used as a FillInto element inside Split.

RunIf with a selector select (let us call its opposite not_select) is equivalent to

Split(
[

(
select,
Sequence(*args)

),
not_select
not selected values pass unchanged

],
bufsize=1,
copy_buf=False

)

and can be considered “syntactic sugar”. Use Split for more flexibility.

select is a function that accepts a value (maybe with context) and returns a boolean. It is converted to a Selector.
See its specifications for available options.

args are an arbitrary number of elements that will be run for selected values. They are joined into a Sequence.

New in version 0.4.

run(flow)
Run the sequence for selected values from the flow.

Warning: RunIf disrupts the flow: it feeds values to the sequence one by one, and yields the results.
If the sequence depends on the complete flow (for example, yields the maximum element), this will be
incorrect. The flow after RunIf is not disrupted.

Not selected values pass unchanged.

2.3.2 Functions

Functions to deal with data and context, and seq_map().

A value is considered a (data, context) pair, if it is a tuple of length 2, and the second element is a dictionary or its
subclass.

get_context(value)
Get context from a possible (data, context) pair.

If context is not found, return an empty dictionary.

get_data(value)
Get data from value (a possible (data, context) pair).

If context is not found, return value.

get_data_context(value)
Get (data, context) from value (a possible (data, context) pair).

If context is not found, (value, {}) is returned.

2.3. Flow 47

Lena Documentation, Release 0.6-beta

Since get_data() and get_context() both check whether context is present, this function may be slightly
more efficient and compact than the other two.

seq_map(seq, container, one_result=True)
Map Lena Sequence seq to the container.

For each value from the container, calculate seq.run([value]). This can be a list or a single value. If
one_result is True, the result must be a single value. In this case, if results contain less than or more than
one element, LenaValueError is raised.

The list of results (lists or single values) is returned. The results are in the same order as read from the container.

2.3.3 Group plots

Group several plots into one.

Since data can be produced in different places, several classes are needed to support this. First, the plots of interest must
be selected (for example, one-dimensional histograms). This is done by Selector. Selected plots must be grouped.
For example, we may want to plot data x versus Monte-Carlo x, but not data x vs data y. Data is grouped by GroupBy.
To preserve the group, we can’t yield its members to the following elements, but have to transform the plots inside
GroupPlots. We can also scale (normalize) all plots to one using GroupScale.

Example from a real analysis:

Sequence(
... read data and produce histograms ...
MakeFilename(dirname="background/{{run_number}}"),
UpdateContext("output.plot.name", "{{variable.name}}",

raise_on_missing=True),
lena.flow.GroupPlots(

group_by="variable.coordinate",
Select either histograms (data) or Graphs (fit),
but only having "variable.coordinate" in context
select=("variable.coordinate", [histogram, Graph]),
scale to data
scale=Not("fit"),
transform=(

ToCSV(),
scaled plots will be written to separate files
MakeFilename(

"{{output.filename}}_scaled",
overwrite=True,

),
UpdateContext("output.plot.name", "{{variable.name}}",

raise_on_missing=True),
write,
Several prints were used during this code creation
Print(transform=lambda val: val[1]["plot"]["name"]),

),
make both single and combined plots of coordinates
yield_selected=True,

),
create file names for combined plots
MakeFilename("combined_{{variable.coordinate}}"),
non-combined plots will still need file names

(continues on next page)

48 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

(continued from previous page)

MakeFilename("{{variable.name}}"),
lena.output.ToCSV(),
write,
lena.context.Context(),
here our jinja template renders a group as a list of items
lena.output.RenderLaTeX(template_dir=TEMPLATE_DIR,

select_template=select_template),
we have a single template, no more groups are present
write,
lena.output.LaTeXToPDF(),

)

class GroupBy(group_by='', merge='')
Group values.

Data is added during fill(). Groups dictionary is available as groups attribute. groups is a mapping of keys
(defined by group_by and merge) to lists of items with the same key.

group_by is a function that returns distinct hashable results for values from different groups. It can be also
a dot-separated formatting string. In that case only the context part of the value is used (see context.
format_context). group_by can be a tuple of strings or callables. In that case the hash value will be combined
from each part of the tuple. A tuple may be used when not all parts of context can be always rendered (that would
lead to an error or an empty string if they were combined into one formatting string).

Changed in version 0.6: group_by is no longer a function.

New in version 0.6: merge allows ignoring keys.

clear()

Deprecated since version 0.6: use the standard reset() method.

compute()

Yield values groupped by distinct keys one by one.

Each group is a tuple of filled values having the same key.

fill(val)
Find the corresponding group and fill it with val.

A group key is calculated via group_by and merge. If no such key exists, a new group is created.

If a formatting key was not found for val (or if no values for a tuple group_by could produce keys)
LenaValueError is raised.

reset()

Remove all groups.

update(val)
Deprecated since version 0.6: use the standard fill() method.

class GroupPlots(group_by, select=None, transform=(), scale=None, yield_selected=False)
Deprecated since version 0.6: use GroupBy, group_plots() and other relevant elements.

Plots to be grouped are chosen by select, which acts as a boolean function. By default everything is selected. If
select is not a Selector, it is converted to that class. Use Selector for more options.

Deprecated since version 0.5: use RunIf instead of select.

2.3. Flow 49

Lena Documentation, Release 0.6-beta

Plots are grouped by group_by, which returns different keys for different groups. It can
be a function of a value or a formatting string for its context (see GroupBy). Example:
group_by=”{{value.variable.name}}_{{variable.name}}”.

transform is a sequence that processes individual plots before yielding. Example: transform=(ToCSV(),
write). transform is called after scale.

Deprecated since version 0.5: use MapGroup instead of transform.

scale is a number or a string. A number means the scale, to which plots must be normalized. A string is a name
of the plot to which other plots must be normalized. If scale is not an instance of GroupScale, it is converted
to that class. If a plot could not be rescaled, LenaValueError is raised. For more options, use GroupScale.

yield_selected defines whether selected items should be yielded during run(). By default it is False: if we
used a variable in a combined plot, we don’t create a separate plot of that.

run(flow)
Run the flow and yield final groups.

Each item of the flow is checked with the selector. If it is selected, it is added to groups. Otherwise, it is
yielded.

After the flow is finished, groups are yielded. Groups are lists of items, which have same keys returned
from group_by. Each group’s context (including empty one) is inserted into a list in context.group. If any
element’s context.output.changed is True, the final context.output.changed is set to True (and to False
otherwise). The resulting context is updated with the intersection of groups’ contexts.

If scale was set, plots are normalized to the given value or plot. If that plot was not selected (is missing in
the captured group) or its norm could not be calculated, LenaValueError is raised.

group_plots(group)
Return data parts of the group and set context[“group”] to their intersection.

If any of values has been changed, context.output.changed of the group is set to True.

class GroupScale(scale_to, allow_zero_scale=False, allow_unknown_scale=False)
Scale a group of data.

scale_to defines the method of scaling. If a number is given, group items are scaled to that. Otherwise it is
converted to a Selector, which must return a unique item from the group. Group items will be scaled to the
scale of that item.

By default, attempts to rescale a structure with unknown or zero scale raise an error. If allow_zero_scale and
allow_unknown_scale are set to True, the corresponding errors are ignored and the structure remains unscaled.

__call__(group)
Scale the group. See scale_to() for details.

If group is not iterable, LenaValueError is raised.

class MapGroup(*seq, **map_scalars)
Apply a sequence to groups.

Arguments seq must form a Sequence.

Set a keyword argument map_scalars to False to ignore scalar values (those that are not groups). Other keyword
arguments raise LenaTypeError.

New in version 0.5.

50 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

run(flow)
Map seq to every group from flow.

A value represents a group if its context has a key group and its data part is iterable (for example, a list of
values). If length of data is different from the length of context.group, LenaRuntimeError is raised.

seq must produce an equal number of results for each item of group, or LenaRuntimeError is raised.
These results are yielded in groups one by one.

Common changes of group context update common context (that of the value). context.output.changed is
set appropriately.

class Selector(selector, raise_on_error=True)
A boolean function on values.

The usage of selector depends on its type.

If selector is a class, __call__() checks that data part of the value is subclassed from that.

A callable is used as it is.

A string means that value’s context must conform to that (as in context.contains).

selector can be a container. In this case its items are converted to selectors. If selector is a list, the result is or
applied to results of each item. If it is a tuple, boolean and is applied to the results.

raise_on_error is a boolean that sets whether in case of an exception the selector raises that exception or returns
False. If selector is a container, raise_on_error will be used recursively during the initialization of its items.

__call__(value)
Check whether value is selected.

If an exception occurs and raise_on_error is False, the result is False. This could be used while testing
potentially non-existing attributes or arbitrary contexts. However, this is not recommended, since it covers
too many errors and some of them should be raised explicitly.

class And(selectors, raise_on_error=True)
Bases: Selector

And-test of multiple selectors.

selectors is a tuple of items, each of which is a Selector or will be converted to that.

raise_on_error has the same meaning as in Selector, and will be applied to each newly initialized subselector.

__call__(val)
Check whether value is selected.

If an exception occurs and raise_on_error is False, the result is False. This could be used while testing
potentially non-existing attributes or arbitrary contexts. However, this is not recommended, since it covers
too many errors and some of them should be raised explicitly.

class Or(selectors, raise_on_error=True)
Bases: Selector

Or-test of multiple selectors.

selectors is a list of items, each of which is a Selector or will be converted to that. Evaluation is short-circuit,
that is if a selector was true, further ones are not applied.

raise_on_error has the same meaning as in Selector, and will be applied to each newly initialized subselector.

2.3. Flow 51

Lena Documentation, Release 0.6-beta

__call__(val)
Check whether value is selected.

If an exception occurs and raise_on_error is False, the result is False. This could be used while testing
potentially non-existing attributes or arbitrary contexts. However, this is not recommended, since it covers
too many errors and some of them should be raised explicitly.

class Not(selector, raise_on_error=True)
Bases: Selector

Negate a selector.

selector is converted to Selector.

raise_on_error has the same meaning as in Selector.

__call__(value)
Negate the result of the selector.

If raise_on_error is False, then this is a full negation (including the case of an error encountered in the
selector). If raise_on_error is True, then any occurred exception will be re-raised here.

2.3.4 Iterators

Iterators allow to transform a data flow or create a new one.

class Chain(*iterables)
Chain generators.

Chain can be used as a Source to generate data.

Example:

>>> c = lena.flow.Chain([1, 2, 3], ['a', 'b'])
>>> list(c())
[1, 2, 3, 'a', 'b']

iterables will be chained during __call__(), that is after the first one is exhausted, the second is called, etc.

__call__()

Generate values from chained iterables.

class CountFrom(start=0, step=1)
Generate numbers from start to infinity, with step between values.

Similar to itertools.count().

__call__()

Yield values from start to infinity with step.

ISlice(*args, **kwargs)
Deprecated since version 0.4: use Slice.

class Reverse

Reverse the flow (yield values from last to first).

Warning: This element will consume the whole flow.

52 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

run(flow)
Consume the flow and yield values in reverse order.

class Slice(*args)
Slice data flow from start to stop with step.

Initialization:

Slice (stop)

Slice (start, stop [, step])

Similar to itertools.islice() or range(). Negative indices for start and stop are supported during run().

Examples:

>>> Slice(1000)

analyse only one thousand first events (no other values from flow are generated). Use it for quick checks of data
on small subsamples.

>>> Slice(-1)

yields all elements from the flow except the last one.

>>> Slice(1, -1)

yields all elements from the flow except the first and the last one.

Note that in case of negative indices it is necessary to store abs(start) or abs(stop) values in memory. For example,
to discard the last 200 elements one has to a) read the whole flow, b) store 200 elements during each iteration.

It is not possible to use negative indices with fill_into(), because it doesn’t control the flow and doesn’t know
when it is finished. To obtain a negative step, use a composition with Reverse.

fill_into(element, value)
Fill element with value.

Values are filled in the order defined by (start, stop, step). Element must have a fill(value) method.

When the filling should stop, LenaStopFill is raised (Split handles this normally). Sometimes for
step more than one LenaStopFill will be raised before reaching stop elements. Early exceptions are an
optimization and don’t affect the correctness of this method.

run(flow)
Yield values from flow from start to stop with step.

2.4 Input

ROOT readers:

ReadROOTFile([types, keys, selector]) Read ROOT files from flow.
ReadROOTTree([leaves, get_entries]) Read ROOT trees from flow.

2.4. Input 53

Lena Documentation, Release 0.6-beta

2.4.1 ROOT readers

To use these classes, ROOT must be installed.

class ReadROOTFile(types=None, keys=None, selector=None)
Read ROOT files from flow.

Keyword arguments specify which objects should be read from ROOT files.

types sets the list of possible objects types.

keys specifies a list of allowed objects’ names. Only simple keys are currently allowed (no regular expressions).

If both types and keys are provided, then objects that satisfy any of types or keys are read.

selector is a general function that accepts an object from a ROOT file and returns a boolean. If selector is given,
both types and keys must be omitted, or LenaTypeError is raised.

run(flow)
Read ROOT files from flow and yield objects they contain.

For file to be read, data part of the value must be a string (file’s path) and context.input.read_root_file must
not be False. Other values pass unchanged. After all entries from the file are yielded, it is closed.

context.input.root_file_path is updated with the path to the ROOT file.

Warning: After a ROOT file is closed, all its contained objects are destroyed. Make all processing
within one flow: don’t save yielded values to a list, or save copies of them.

class ReadROOTTree(leaves=None, get_entries=None)
Read ROOT trees from flow.

Trees can be read in two ways.

In the first variant, leaves is a list of strings that enables to read the specified tree leaves. Only branches con-
taining the leaves are read. To get a leaf from a specific branch, add it to the leaf’s name with a slash, e.g.
“my_branch/my_leaf”. Tree entries are yielded as named tuples with fields named after leaves.

A leaf can contain a branch name prepended

In the second variant, get_entries is a function that accepts a ROOT tree and yields its entries.

Exactly one of leaves or get_entries (not both) must be provided, otherwise LenaTypeError is raised.

Note: To collect the resulting values (not use them on the fly), make copies of them in get_entries (e.g. use
copy.deepcopy). Otherwise all items will be the last value read.

run(flow)
Read ROOT trees from flow and yield their contents.

context.input.root_tree_name is updated with the name of the current tree.

The tree must have one and only one branch corresponding to each leaf, otherwise LenaRuntimeError is
raised. To read leaves with the same name in several branches, specify branch names for them.

54 Chapter 2. Reference

https://root.cern/

Lena Documentation, Release 0.6-beta

2.5 Math

Functions of multidimensional arguments:

flatten(array) Flatten an array of arbitrary dimension.
mesh (ranges, nbins) Generate equally spaced mesh of nbins cells in the given

range.
md_map(f, *arrays) Multidimensional map.
refine_mesh (arr, refinement) Refine (subdivide) one-dimensional mesh arr.

Functions of scalar and multidimensional arguments:

clip(a, interval) Clip (limit) the value.
isclose(a, b[, rel_tol, abs_tol]) Return True if a and b are approximately equal, and

False otherwise.

Elements:

DSum([total]) Calculate an accurate floating point sum using decimals.
Mean([sum_seq, pass_on_empty]) Calculate the arithmetic mean (average) of input values.
Sum([total]) Calculate the sum of input values.
Vectorize(seq[, dim, construct]) Apply an algorithm to a vector component-wise.

3-dimensional vector:

vector3(x, y, z) 3-dimensional vector with Cartesian, spherical and
cylindrical coordinates.

2.5.1 Functions of multidimensional arguments

flatten(array)
Flatten an array of arbitrary dimension.

array must be list or a tuple (can be nested). Depth-first flattening is used.

Return an iterator over the flattened array.

Examples:

>>> arr = [1, 2, 3]
>>> list(flatten(arr)) == arr
True
>>> arr = [[1, 2, 3, [4]], 5, [[6]], 7]
>>> list(flatten(arr))
[1, 2, 3, 4, 5, 6, 7]
>>> arr = [[1, 2, [3], 4], 5, [[6]], 7]
>>> list(flatten(arr))
[1, 2, 3, 4, 5, 6, 7]

mesh(ranges, nbins)
Generate equally spaced mesh of nbins cells in the given range.

2.5. Math 55

Lena Documentation, Release 0.6-beta

Parameters

• ranges – a pair of (min, max) values for 1-dimensional range, or a list of ranges in corre-
sponding dimensions.

• nbins – number of bins for 1-dimensional range, or a list of number of bins in corresponding
dimensions.

>>> from lena.math import mesh
>>> mesh((0, 1), 2)
[0, 0.5, 1]
>>> mesh(((0, 1), (10, 12)), (1, 2))
[[0, 1], [10, 11.0, 12]]

Note that because of rounding errors two meshes should not be naively compared, they will probably appear
different. One should use isclose for comparison.

>>> from lena.math import isclose
>>> isclose(mesh((0, 1), 10),
... [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
True

md_map(f, *arrays)
Multidimensional map.

Return function f mapped to contents of multidimensional arrays. f is a function of that many arguments as the
number of arrays.

An item of arrays must be a list of (possibly nested) lists. Its contents remain unchanged. Returned array has same
dimensions as those of the initial ones (they are all assumed equal). If any of arrays is not a list, LenaTypeError
is raised.

>>> from lena.math import md_map
>>> arr = [-1, 1, 0]
>>> md_map(abs, arr)
[1, 1, 0]
>>> arr = [[0, -1], [2, 3]]
>>> md_map(abs, arr)
[[0, 1], [2, 3]]
>>> # multiple arrays
>>> md_map(lambda x, y: x+y, [0, 1], [2, 3])
[2, 4]

refine_mesh(arr, refinement)
Refine (subdivide) one-dimensional mesh arr.

refinement is the number of subdivisions. It must be not less than 1.

Note that to create a new mesh may be faster. Use this function only for convenience.

56 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

2.5.2 Functions of scalar and multidimensional arguments

clip(a, interval)
Clip (limit) the value.

Given an interval (a_min, a_max), values of a outside the interval are clipped to the interval edges. For example,
if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

>>> clip(-1, (0, 1))
0
>>> # tuple looks better, but list can be used too
>>> clip(2, [0, 1])
1
>>> clip(0.5, (0, 1))
0.5

If a_min > a_max or if interval has length more than 2, LenaValueError is raised. If interval is not a container,
LenaTypeError is raised.

isclose(a, b, rel_tol=1e-09, abs_tol=0.0)
Return True if a and b are approximately equal, and False otherwise.

rel_tol is the relative tolerance. It is multiplied by the greater of the magnitudes of the two arguments; as the
values get larger, so does the allowed difference between them while still considering them close.

abs_tol is the absolute tolerance. If the difference is less than either of those tolerances, the values are considered
equal.

a and b must be either numbers or lists/tuples of same dimensions (may be nested), or have a method isclose.
Otherwise LenaTypeError is raised. For containers, isclose is called elementwise. If every corresponding
element is close, the containers are close. Dimensions are not checked to be equal.

First, a and b are checked if any of them has isclose method. If a and b both have isclose method, then they must
both return True to be close. Otherwise, if only one of a or b has isclose method, it is called.

Special values of NaN, inf, and -inf are not supported.

>>> isclose(1, 2)
False
>>> isclose([1, 2, 3], (1, 2., 3))
True

This function for scalar numbers appeared in math module in Python 3.5.

2.5.3 Elements

Elements for mathematical calculations.

class DSum(total=0)
Calculate an accurate floating point sum using decimals.

total is the initial value of the sum.

See also:

Use Sum for quick and precise sums of integer numbers.

2.5. Math 57

Lena Documentation, Release 0.6-beta

compute()

Yield the calculated sum as float.

If the current context is not empty, yield (sum, context). Otherwise yield only the sum.

fill(value)
Fill self with value.

The value can be a (data, context) pair. The last context value (considered empty if missing) sets the current
context.

reset()

Reset the sum to 0.

Context is reset to {}.

class Mean(sum_seq=None, pass_on_empty=False)
Calculate the arithmetic mean (average) of input values.

sum_seq is the algorithm to calculate the sum. If it is not provided, ordinary Python summation is used. Other-
wise it is converted to a FillCompute sequence.

If pass_on_empty is True, then if nothing was filled, don’t yield anything. By default an error is raised (see
compute()).

compute()

Calculate the mean and yield.

If the current context is not empty, yield (mean, context). Otherwise yield only mean. If the sum_seq yields
several values, they are all yielded, but only the first is divided by number of events (considered the mean
value).

If no values were filled (count is zero), the mean can’t be calculated and LenaZeroDivisionError is
raised. This can be changed to yielding nothing if pass_on_empty was initialized to True.

fill(value)
Fill self with value.

The value can be a (data, context) pair. The last context value (considered empty if missing) is yielded in
the output.

reset()

Reset sum, count and context.

Sum is reset zero (or the reset method of sum_seq is called), count to zero and context to {}.

class Sum(total=0)
Calculate the sum of input values.

total is the initial value of the sum.

See also:

Use DSum for exact floating summation.

compute()

Calculate the sum and yield.

If the current context is not empty, yield (sum, context). Otherwise yield only sum.

58 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

fill(value)
Fill self with value.

The value can be a (data, context) pair. The last context value (considered empty if missing) sets the current
context.

reset()

Reset total and context.

total is reset to 0 (not the starting number) and context to {}.

class Vectorize(seq, dim=-1, construct=None)
Apply an algorithm to a vector component-wise.

seq must be a FillCompute element or sequence.

dim is the dimension of the input data (and of the constructed structure). seq may also be a list of sequences, in
that case dim may be omitted.

construct allows one to create an arbitrary object (by default the resulting values are tuples of dimension dim).

compute()

Yield results from compute() for each component grouped together.

If compute for different components yield different number of results, the longest output is yielded (the
others are padded with None).

If the resulting value can’t be converted to the type of the first value (or construct couldn’t be used), a tuple
is yielded.

fill(val)
Fill sequences for each component of the data vector.

2.5.4 3-dimensional vector

vector3 is a 3-dimensional vector. It supports spherical and cylindrical coordinates and basic vector operations.

Initialization, vector addition and scalar multiplication create new vectors:

>>> v1 = vector3(0, 1, 2)
>>> v2 = vector3(3, 4, 5)
>>> v1 + v2
vector3(3, 5, 7)
>>> v1 - v2
vector3(-3, -3, -3)
>>> 3 * v1
vector3(0, 3, 6)
>>> v1 * 3
vector3(0, 3, 6)

Vector attributes can be set and read. Vectors can be tested for exact or approximate equality with == and isclose
method.

>>> v2.z = 0
>>> v2
vector3(3, 4, 0)
>>> v2.r = 10

(continues on next page)

2.5. Math 59

Lena Documentation, Release 0.6-beta

(continued from previous page)

>>> v2 == vector3(6, 8, 0)
True
>>> v2.theta = 0
>>> v2.isclose(vector3(0, 0, 10))
True
>>> from math import pi
>>> v2.phi = 0
>>> v2.theta = pi/2.
>>> v2.isclose(vector3(10, 0, 0))
True

Vector components are floats in general. Other values can be used as well, if that makes sense for the operations used
(types are not tested during the initialization). For example, vectors in the examples above have integer coordinates,
which will become floats if we multiply them by floats, divide or maybe rotate. For usual vector additions or subtrac-
tions, though, their coordinates will remain integer.

class vector3(x, y, z)
3-dimensional vector with Cartesian, spherical and cylindrical coordinates.

Create a vector from Cartesian coordinates x, y, z.

Attributes

vector3 has usual vector attributes x, y, z, spherical coordinates r, phi, theta and cylindrical ones rho and rho2
(rho^2 = x^2 + y^2).

Spherical and Cartesian coordinates are connected by this formula:

𝑥 = 𝑟 * cos(𝜑) * sin(𝜃),
𝑦 = 𝑟 * sin(𝜑) * sin(𝜃),
𝑧 = 𝑟 * cos(𝜃),

𝜑 ∈ [0, 2𝜋], 𝜃 ∈ [0, 𝜋].

𝜑 and 𝜑+ 2𝜋 are equal.

Cartesian coordinates can be obtained and set through indices starting from 0 (v.x = v[0]). In this respect, vector3
behaves as a container of length 3.

Only Cartesian coordinates are stored internally (spherical and other coordinates are recomputed each time).

Attributes can be got and set using subscript or a function set*, get*. For example:

>>> v = vector3(1, 0, 0)
>>> v.x = 0
>>> x = v.getx()
>>> v.setx(x+1)
>>> v
vector3(1, 0, 0)

𝑟2 and cos 𝜃 can be obtained with methods getr2() and getcostheta().

Comparisons

For elementwise comparison of two vectors one can use ‘==’ and ‘!=’ operators. Because of rounding errors,
this can often show two same vectors as different. In general, it is recommended to use approximate comparison
with isclose method.

Comparisons like ‘>’, ‘<=’ are all prohibited: if one tries to use these operators, LenaTypeError is raised.

60 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

Truth testing

vector3 is non-zero if its magnitude (r) is not 0.

Vector operations

3-dimensional vectors can be added and subtracted, multiplied or divided by a scalar. Multiplication by a scalar
can be written from any side of the vector (c*v or v*c). A vector can also be negated (-v).

For other vector operations see methods below.

angle(B)
The angle between self and B, in radians.

>>> v1 = vector3(0, 3, 4)
>>> v2 = vector3(0, 3, 4)
>>> v1.angle(v2)
0.0
>>> v2 = vector3(0, -4, 3)
>>> from math import degrees
>>> degrees(v1.angle(v2))
90.0
>>> v2 = vector3(0, -30, -40)
>>> degrees(v1.angle(v2))
180.0

cosine(B)
Cosine of the angle between self and B.

>>> v1 = vector3(0, 3, 4)
>>> v2 = vector3(0, 3, 4)
>>> v1.cosine(v2)
1.0
>>> v2 = vector3(0, -4, 3)
>>> v1.cosine(v2)
0.0
>>> v2 = vector3(0, -30, -40)
>>> v1.cosine(v2)
-1.0

cross(B)
The cross product between self and B, 𝐴×𝐵.

>>> v1 = vector3(0, 3, 4)
>>> v2 = vector3(0, 1, 0)
>>> v1.cross(v2)
vector3(-4, 0, 0)

dot(B)
The scalar product between self and B, 𝐴 ·𝐵.

classmethod from_spherical(r, phi, theta)
Construct a new vector3 from spherical coordinates.

r is its magnitude, phi is the azimuth angle from 0 to 2 * 𝜋 and theta is the polar angle from 0 (z = 1) to 𝜋
(z = -1).

2.5. Math 61

Lena Documentation, Release 0.6-beta

>>> from math import pi
>>> vector3.from_spherical(1, 0, 0)
vector3(0.0, 0.0, 1.0)
>>> vector3.from_spherical(1, 0, pi).isclose(vector3(0, 0, -1))
True
>>> vector3(1, 0, 0).isclose(vector3.from_spherical(1, 0, pi/2))
True
>>> vector3.from_spherical(1, pi, 0).isclose(vector3(0.0, 0.0, 1.0))
True
>>> vector3.from_spherical(1, pi/2, pi/2).isclose(vector3(0.0, 1.0, 0.0))
True

Changed in version 0.6: Renamed from fromspherical.

isclose(B, rel_tol=1e-09, abs_tol=0.0)
Test whether two vectors are approximately equal.

Parameter semantics is the same as for the general isclose.

>>> v1 = vector3(0, 1, 2)
>>> v1.isclose(vector3(1e-11, 1, 2))
True

norm()

𝐴/|𝐴|, a unit vector in the direction of self.

>>> v1 = vector3(0, 3, 4)
>>> n1 = v1.norm()
>>> v1n = vector3(0, 0.6, 0.8)
>>> (n1 - v1n).r < 1e-6
True

proj(B)
The vector projection of self along B.

A.proj(B) = (𝐴 · 𝑛𝑜𝑟𝑚(𝐵))𝑛𝑜𝑟𝑚(𝐵).

>>> v1 = vector3(0, 3, 4)
>>> v2 = vector3(0, 2, 0)
>>> v1.proj(v2)
vector3(0.0, 3.0, 0.0)

rotate(theta, B)
Rotate self around B through angle theta.

From the position where B points towards us, the rotation is counterclockwise (the right hand rule).

>>> v1 = vector3(1, 1, 1)
>>> v2 = vector3(0, 1, 0)
>>> from math import pi
>>> vrot = v1.rotate(pi/2, v2)
>>> vrot.isclose(vector3(1, 1, -1))
True

62 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

scalar_proj(B)
The scalar projection of self along B.

A.scalar_proj(B) = 𝐴 · 𝑛𝑜𝑟𝑚(𝐵).

>>> v1 = vector3(0, 3, 4)
>>> v2 = vector3(0, 2, 0)
>>> v1.scalar_proj(v2)
3.0

2.6 Meta

Elements:

SetContext(key, value) Set static context for this sequence.
StoreContext([name, verbose]) Store static context.
UpdateContextFromStatic() Update runtime context with the static one.

2.6.1 Elements

class SetContext(key, value)
Set static context for this sequence.

Static context does not automatically update runtime context. Use UpdateContextFromStatic for that.

Static context can be used during the initialisation phase to set output directories, Cache names, etc. There is no
way to update static context from runtime one.

key is a string representing a (possibly nested) dictionary key. value is its value. See str_to_dict() for details.

class StoreContext(name='', verbose=False)
Store static context. Use for debugging.

name and verbose affect output and representation.

class UpdateContextFromStatic

Update runtime context with the static one.

Note that for runtime context later elements update previous values, but for static context it is the opposite (ex-
ternal and previous elements take precedence).

2.7 Output

Output:

2.6. Meta 63

Lena Documentation, Release 0.6-beta

MakeFilename([filename, dirname, fileext, ...]) Make file name, file extension and directory name.
PDFToPNG([format, overwrite, verbose, ...]) Convert PDF to image format (by default PNG).
iterable_to_table(iterable[, format_, ...]) Create a table from an iterable.
ToCSV([separator, header, duplicate_last_bin]) Convert data to CSV text.
Write(output_directory[, output_filename, ...]) Write text data to filesystem.
Writer(*args, **kwargs)

Deprecated since version 0.4.

LaTeX utilities:

LaTeXToPDF([overwrite, verbose, create_command]) Run pdflatex binary for LaTeX files.
RenderLaTeX([select_template, template_dir, ...]) Create LaTeX from templates and data.

2.7.1 Output

class MakeFilename(filename=None, dirname=None, fileext=None, prefix=None, suffix=None, overwrite=False)
Make file name, file extension and directory name.

filename is a string, which will be used as a file name without extension (but it can contain a relative path). The
string can contain formatting arguments enclosed in double braces. These arguments will be filled from context
during __call__(). Example:

MakeFilename(“{{variable.type}}/{{variable.name}}”)

dirname and fileext set directory name and file extension. They are treated similarly to filename in most aspects.

It is possible to “postpone” file name creation, but to provide a part of a future file name through prefix or suffix.
They will be appended to file name during its creation. Existing file names are not affected. It is not allowed to
use prefix or suffix if filename argument is given.

For example, if one creates logarithmic plots, but complete file names will be made later, one may use Make-
Filename(suffix=”_log”).

All these arguments must be strings, otherwise LenaTypeError is raised. They may all contain formatting
arguments.

By default, values with context.output already containing filename, dirname or fileext are not updated (pass
unaltered). This can be changed using a keyword argument overwrite. For more options, use lena.context.
UpdateContext.

At least one argument must be present, or LenaTypeError will be raised.

__call__(value)
Add output keys to the value’s context.

Formatting context is retrieved from static context and from the context part of the value. The run-time
context has higher precedence.

filename, dirname, fileext, if initialized, set respectively context.output.{filename,dirname,fileext} (if they
didn’t exist).

If this elements sets file name and if context contains output.prefix or output.suffix, they are prepended to
or appended after the file name. After that they are removed from context.output.

If this element adds a prefix or a suffix and they exist in the context, then prefix is prepended before the
existing prefix, and suffix is appended after the existing suffix, unless overwrite is set to True: in that case

64 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

they are overwritten. prefix and suffix always update their existing keys in the context if they could be
formatted (which is different for attributes like filename).

If current context can’t be formatted (doesn’t contain all necessary keys for the format string), a key is not
updated.

class PDFToPNG(format='png', overwrite=False, verbose=True, timeoutsec=60)
Convert PDF to image format (by default PNG).

Set output format (by default png).

If the resulting file already exists and the pdf is unchanged (which is checked through context.output.changed),
conversion is not repeated. To convert all pdfs to images, set overwrite to True (by default it is False).

To disable printing messages during run(), set verbose to False.

timeoutsec is time (in seconds) for subprocess timeout (used only in Python 3). If the timeout expires, the child
process will be killed and waited for. The TimeoutExpired exception will be re-raised after the child process
has terminated.

This element uses pdftoppm binary internally. pdftoppm can use other output formats, for example jpeg or tiff.
See pdftoppm manual for more details.

run(flow)
Convert PDF files to format.

PDF files are recognized via context.output.filetype. Their paths are assumed to be the data part of the
value.

Data yielded is the resulting file name. Context is updated with output.filetype set to format.

Other values are passed unchanged.

iterable_to_table(iterable, format_=None, header='', header_fields=(), row_start='', row_end='',
row_separator=',', footer='')

Create a table from an iterable.

The resulting table is yielded line by line. If the header or footer is empty, it is not yielded.

format_ controls the output of individual cells in a row. By default, it uses standard Python representation. For
finer control, one should provide a sequence of formatting options for each column. For floating values it is
recommended to output only a finite appropriate number of digits, because this would allow the output to be
immutable between calls despite technical reasons. Default formatting allows an arbitrary number of columns
in each cell. For tables to be well-formed, substitute missing values in the iterable for some placeholder like "",
None, etc.

Each row is prepended with row_start and appended with row_end. If it consists of several columns, they are
joined by row_separator. Separators between rows can be added while iterating the result.

This function can be used to convert structures to different formats: csv, html, xml, etc.

Examples:

>>> angles = [(3.1415*i/4, 180*i/4) for i in range(1, 5)]
>>> format_ = ("{:.2f}", "{:.0f}")
>>> header_fields = ("rad", "deg")
>>>
>>> csv_rows = iterable_to_table(
... angles, format_=format_,
... header="{},{}", header_fields=header_fields,
... row_separator=",",

(continues on next page)

2.7. Output 65

Lena Documentation, Release 0.6-beta

(continued from previous page)

...)
>>> print("\n".join(csv_rows))
rad,deg
0.79,45
1.57,90
2.36,135
3.14,180
>>>
>>> html_rows = iterable_to_table(
... angles, format_=format_,
... header="<table>\n" + " "*4 + "<tr><td>{}</td><td>{}</td></tr>",
... header_fields=header_fields,
... row_start=" "*4 + "<tr><td>", row_end="</td></tr>",
... row_separator="</td><td>",
... footer="</table>"
...)
>>> print("\n".join(html_rows))
<table>

<tr><td>rad</td><td>deg</td></tr>
<tr><td>0.79</td><td>45</td></tr>
<tr><td>1.57</td><td>90</td></tr>
<tr><td>2.36</td><td>135</td></tr>
<tr><td>3.14</td><td>180</td></tr>

</table>
>>>

For more complex formatting use templates (see RenderLaTeX).

New in version 0.5.

class ToCSV(separator=',', header=None, duplicate_last_bin=True)
Convert data to CSV text.

Can be converted:

• histogram (implemented only for 1- and 2-dimensional histograms).

• any iterable object (including graph).

separator delimits values in the output text. The result is yielded as one string starting from header.

If duplicate_last_bin is True, then for histograms contents of the last bin will be written in the end twice. This
may be useful for graphical representation: if last bin is from 9 to 10, then the plot may end on 9, while this
parameter allows to write bin content at 10, creating the last horizontal step.

run(flow)
Convert values from flow to CSV text.

context.output is updated with {“filetype”: “csv”}. If a data structure has a method _up-
date_context(context), it also updates the current context during the transform. All not converted data
is yielded unchanged. If output.duplicate_last_bin is present in context, it takes precedence over this ele-
ment’s value. To force the common behaviour, one can manually update context before this element.

If context.output.to_csv is False, the value is skipped.

Data is yielded as a whole CSV block. To generate CSV line by line, use hist1d_to_csv(),
hist2d_to_csv() or iterable_to_table().

66 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

hist1d_to_csv(hist, header=None, separator=',', duplicate_last_bin=True)
Yield CSV-formatted strings for a one-dimensional histogram.

hist2d_to_csv(hist, header=None, separator=',', duplicate_last_bin=True)
Yield CSV-formatted strings for a two-dimensional histogram.

class Write(output_directory, output_filename='output', verbose=True, existing_unchanged=False,
overwrite=False)

Write text data to filesystem.

output_directory is the base output directory. It can be further appended by the incoming data. Non-existing
directories are created.

output_filename is the name for unnamed data. Use it to write only one file.

If no arguments are given, the default is to write to “output.txt” in the current directory (rewritten for every
new value) (unless different extensions are provided through the context). It is recommended to create filename
explicitly using MakeFilename. The default writer’s output file is useful in case of errors, when explicit file
name didn’t work.

verbose sets whether additional information should be printed on the screen. verbose set to False disables
runtime messages.

existing_unchanged and overwrite are used during run() to change the handling of existing files. These options
are mutually exclusive: their simultaneous use raises LenaValueError.

run(flow)
Only strings (and unicode in Python 2) and objects with a method write are written. Method write must
accept a string with output file path as an argument. If context[“output”][“write”] is set to False, a value
will not be written. Not written values pass unchanged.

Full name of the file to be written (filepath) has the form self.output_directory/dirname/filename.fileext,
where dirname, filename and file extension fileext are searched in context[“output”]. If filename is missing,
Write’s default filename is used. If fileext is missing, then filetype is used; if it is also absent, the default
file extension is “txt”. It is usually enough to provide fileext.

If the resulting file exists and its content is the same as the incoming data, file is not overwritten (unless it
was produced with an object’s method write, which doesn’t allow to learn whether the file has changed). If
existing_unchanged is True, existing file contents are not checked (they are assumed to be not changed). If
overwrite is True, file contents are not checked, and all data is assumed to be changed. If a file was written,
then output.changed is set to True, otherwise, if it was not set before, it is set to False. If in that case
output.changed existed, it retains its previous value.

Example: suppose you have a sequence (Histogram, ToCSV, Write, RenderLaTeX, Write, LaTeXToPDF).
If both histogram representation and LaTeX template exist and are unchanged, the second Write signals
context.output.changed=False, and LaTeXToPDF doesn’t regenerate the plot. If LaTeX template was un-
changed, but the previous context from the first Write signals context.output.changed=True, then in the
second Write template is not rewritten, but context.output.changed remains True. On the second run, even
if we check file contents, the program will run faster for unchanged files even for Write, because read speed
is typically higher than write speed.

File name with full path is yielded as data. context.output is updated with fileext and filename (in case they
were not present), and filepath, where filename is its base part (without output directory and extension) and
filepath is the complete path. If data is equal to context.output.filepath, this means that the file was already
written by another Write, and the value is skipped (yielded unchanged).

If context.output.filename is present but empty, LenaRuntimeError is raised.

class Writer(*args, **kwargs)
Deprecated since version 0.4: use Write.

2.7. Output 67

Lena Documentation, Release 0.6-beta

2.7.2 LaTeX

class LaTeXToPDF(overwrite=False, verbose=1, create_command=None)
Run pdflatex binary for LaTeX files.

It runs in parallel (separate process is spawned for each job) and non-interactively.

overwrite sets whether existing unchanged pdfs shall be overwritten during run().

verbose = 0 allows no output messages. 1 prints pdflatex command and output in case of errors. More than 1
prints all pdflatex output.

If you need to run pdflatex (or other executable) with different parameters, provide its command.

create_command is a function which accepts texfile_name, outfilename, output_directory, context (in this order)
and returns a list made of the command and its arguments.

Default command is:

[“pdflatex”, “-halt-on-error”, “-interaction”, “errorstopmode”,
“-output-directory”, output_directory, texfile_name]

run(flow)
Convert all incoming LaTeX files to pdf.

A value from flow corresponds to a TeX file if its context.output.filetype is “tex”. Other values pass un-
changed.

If the resulting pdf file exists and context.output.changed is set to False, pdf rendering is not run. If con-
text.output.changed is not set, then modification times for .tex and .pdf files are compared: if the template
.tex is newer, it is reprocessed. Set the initialization argument overwrite to True to always recreate pdfs.
All non-existent files are always created.

class RenderLaTeX(select_template='', template_dir='.', select_data=None, environment=None,
from_data=False, verbose=0)

Create LaTeX from templates and data.

select_template is a string or a callable. If a string, it is the name of the template to be used (unless con-
text.output.template overwrites that). If select_template is a callable, it must accept a value from the flow and
return template name. If select_template is an empty string (default) and no template could be found in the
context, LenaRuntimeError is raised.

template_dir is the path to the directory with templates (used by jinja2.FileSystemLoader). By default, it is the
current directory.

select_data is a callable to choose data to be rendered. It should accept a value from flow and return boolean.
By default CSV files are selected (see run()).

environment allows user-defined initialisation of jinja Environment. One can use that to add custom filters,
tests, global functions, etc. In that case one must set template_dir for that environment manually. Example user
initialisation:

import jinja2
from lena.output import RenderLaTeX, jinja_syntax_latex

import user settings, filters and globals

def render_latex():
"""Construct RenderLaTeX to be used in analysis sequences."""

(continues on next page)

68 Chapter 2. Reference

https://jinja.palletsprojects.com/en/latest/api/#writing-filters

Lena Documentation, Release 0.6-beta

(continued from previous page)

loader = jinja2.FileSystemLoader(TEMPLATE_PATH)
environment = jinja2.Environment(

loader=loader,
**jinja_syntax_latex

)
environment.filters.update(FILTERS)
environment.globals.update(GLOBALS)
return RenderLaTeX(

select_template=select_template,
environment=environment

)

Usually template context is stored in the context part of values. Sometimes, however, the data part contains the
needed information (for example, during creation of tables). Set from_data to True to render the data part.

verbose controls the verbosity of output. If it is 1, selected values are printed during run(). If it is 2 or higher,
not selected values are printed as well.

run(flow)
Render values from flow to LaTeX.

If no custom select_data was initialized, values with context.output.filetype equal to “csv” are selected by
default.

Rendered LaTeX text is yielded as the data part of the tuple (use Write to write that to the filesystem).
context.output.filetype updates to “tex”.

Not selected values pass unchanged.

2.8 Structures

Histograms:

histogram(edges[, bins, initial_value]) A multidimensional histogram.
Histogram(edges[, bins, make_bins, ...]) An element to produce histograms.

NumpyHistogram(*args, **kwargs) Create a histogram using a 1-dimensional
numpy.histogram.

Graph:

graph (coords[, field_names, scale]) Numeric arrays of equal size.
Graph ([points, context, scale, sort])

Deprecated since version 0.5.

root_graph_errors(graph[, type_code]) 2-dimensional ROOT graph with errors.
ROOTGraphErrors() Element to convert graphs to root_graph_errors.

HistToGraph (make_value[, get_coordinate, ...]) Transform a histogram to a graph .

2.8. Structures 69

Lena Documentation, Release 0.6-beta

Split into bins:

IterateBins([create_edges_str, select_bins]) Iterate bins of histograms.
MapBins(seq[, select_bins, get_example_bin, ...]) Transform bin content of histograms.
SplitIntoBins(seq, arg_var, edges) Split analysis into groups defined by bins.

Histogram functions:

HistCell(edges, bin, index) A namedtuple with fields edges, bin, index.
cell_to_string(cell_edges[, var_context, ...]) Transform cell edges into a string.
check_edges_increasing(edges) Assure that multidimensional edges are increasing.
get_bin_edges(index, edges) Return edges of the bin for the given edges of a his-

togram.
get_bin_on_index(index, bins) Return bin corresponding to multidimensional index.
get_bin_on_value(arg, edges) Get the bin index for arg in a multidimensional array

edges.
get_bin_on_value_1d(val, arr) Return index for value in one-dimensional array.
get_example_bin(struct) Return bin with zero index on each axis of the histogram

bins.
hist_to_graph (hist[, make_value, ...]) Convert a histogram to a graph .
init_bins(edges[, value, deepcopy]) Initialize cells of the form edges with the given value.
integral(bins, edges) Compute integral (scale for a histogram).
iter_bins(bins) Iterate on bins.
iter_bins_with_edges(bins, edges) Generate (bin content, bin edges) pairs.
iter_cells(hist[, ranges, coord_ranges]) Iterate cells of a histogram hist, possibly in a subrange.
make_hist_context(hist, context) Update a deep copy of context with the context of a

histogram hist.
unify_1_md(bins, edges) Unify 1- and multidimensional bins and edges.

2.8.1 Histograms

class histogram(edges, bins=None, initial_value=0)
A multidimensional histogram.

Arbitrary dimension, variable bin size and weights are supported. Lower bin edge is included, upper edge is
excluded. Underflow and overflow values are skipped. Bin content can be of arbitrary type, which is defined
during initialization.

Examples:

>>> # a two-dimensional histogram
>>> hist = histogram([[0, 1, 2], [0, 1, 2]])
>>> hist.fill([0, 1])
>>> hist.bins
[[0, 1], [0, 0]]
>>> values = [[0, 0], [1, 0], [1, 1]]
>>> # fill the histogram with values
>>> for v in values:
... hist.fill(v)
>>> hist.bins
[[1, 1], [1, 1]]

70 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

edges is a sequence of one-dimensional arrays, each containing strictly increasing bin edges.

Histogram’s bins by default are initialized with initial_value. It can be any object that supports addition with
weight during fill (but that is not necessary if you don’t plan to fill the histogram). If the initial_value is compound
and requires special copying, create initial bins yourself (see init_bins()).

A histogram can be created from existing bins and edges. In this case a simple check of the shape of bins is done
(raising LenaValueError if failed).

Attributes

edges is a list of edges on each dimension. Edges mark the borders of the bin. Edges along each dimension are
one-dimensional lists, and the multidimensional bin is the result of all intersections of one-dimensional edges.
For example, a 3-dimensional histogram has edges of the form [x_edges, y_edges, z_edges], and the 0th bin has
borders ((x[0], x[1]), (y[0], y[1]), (z[0], z[1])).

Index in the edges is a tuple, where a given position corresponds to a dimension, and the content at that position
to the bin along that dimension. For example, index (0, 1, 3) corresponds to the bin with lower edges (x[0], y[1],
z[3]).

bins is a list of nested lists. Same index as for edges can be used to get bin content: bin at (0, 1, 3) can be
obtained as bins[0][1][3]. Most nested arrays correspond to highest (further from x) coordinates. For example,
for a 3-dimensional histogram bins equal to [[[1, 1], [0, 0]], [[0, 0], [0, 0]]] mean that the only filled bins are
those where x and y indices are 0, and z index is 0 and 1.

dim is the dimension of a histogram (length of its edges for a multidimensional histogram).

n_out_of_range is the number of entries filled outside the range of the histogram.

overflow and underflow for a one-dimensional histogram are numbers of events above the highest (respec-
tively, below the lowest) edges range. n_out_of_range is equal to the sum of overflow and underflow in
that case. All these attributes are rescaled together with histogram bins during set_nevents() and scale().
For multidimensional histograms overflows and underflows are rarely used, and for efficiency reasons they are
counted only for the last coordinate.

If subarrays of edges are not increasing or if any of them has length less than 2, LenaValueError is raised.

Programmer’s note

one- and multidimensional histograms have different bins and edges format. To be unified, 1-dimensional edges
should be nested in a list (like [[1, 2, 3]]). Instead, they are simply the x-edges list, because it is more intuitive
and one-dimensional histograms are used more often. To unify the interface for bins and edges in your code, use
unify_1_md() function.

__eq__(other)
Two histograms are equal, if and only if they have equal bins, edges and number of events outside of range.

If other is not a histogram , return False.

Note that floating numbers should be compared approximately (using math.isclose()).

add(other, weight=1)
Add a histogram other to this one.

For each bin, the corresponding bin of other is added. It can be multiplied with weight. For example, to
subtract other, use weight -1.

Histograms must have the same edges. Note that floating numbers should be compared approximately
(using math.isclose()).

2.8. Structures 71

Lena Documentation, Release 0.6-beta

fill(coord, weight=1)
Fill histogram at coord with the given weight.

Coordinates outside the histogram edges are ignored.

get_nevents(include_out_of_range=False)
Return number of entries in the histogram.

If the histogram was filled N times, return N. If the histogram was filled with weights w_i, return the sum
of w_i. Values filled outside the histogram range are not counted unless include_out_of_range is True.

scale(other=None, recompute=False)
Compute or set scale (integral of the histogram).

If other is None, return scale of this histogram. If its scale was not computed before, it is computed and
stored for subsequent use (unless explicitly asked to recompute). Note that after changing (filling) the
histogram one must explicitly recompute the scale if it was computed before.

If a float other is provided, rescale self to other.

Histograms with scale equal to zero can’t be rescaled. LenaValueError is raised if one tries to do that.

set_nevents(nevents, include_out_of_range=False)
Scale histogram bins to contain nevents.

include_out_of_range adds n_out_of_range to the estimated number of entries to be rescaled. For exam-
ple, suppose we know the estimated number of events for the signal and the background, and our histograms
have range encompassing only a part of data. Then if we want to plot these two histograms together scaled
to the real number of events, we should take into account the efficiencies of each histogram, that is set
include_out_of_range to True. On the other hand, let us have two spectra in the given range and the data
containing both of them. We fit the signals to the data and get their relative contributions in that region.
After that we scale the histograms to those numbers of events with include_out_of_range set to False
(default). In both examples n_out_of_range is scaled together with the histogram bins.

Rescaling a histogram with zero entries raises a LenaValueError.

class Histogram(edges, bins=None, make_bins=None, initial_value=0)
An element to produce histograms.

edges, bins and initial_value have the same meaning as during creation of a histogram .

make_bins is a function without arguments that creates new bins (it will be called during __init__() and
reset()). initial_value in this case is ignored, but bin check is made. If both bins and make_bins are provided,
LenaTypeError is raised.

compute()

Yield histogram with context.

fill(value)
Fill the histogram with value.

value can be a (data, context) pair. Values outside the histogram edges are ignored.

reset()

Reset the histogram.

Current context is reset to an empty dict. Bins are reinitialized with the initial_value or with make_bins()
(depending on the initialization).

72 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

class NumpyHistogram(*args, **kwargs)
Create a histogram using a 1-dimensional numpy.histogram.

The result of compute is a Lena histogram , but it is calculated using numpy histogram, and all its initialization
arguments are passed to numpy.

Examples

With NumpyHistogram() bins are automatically derived from data.

With NumpyHistogram(bins=list(range(0, 5)), density=True) bins are set explicitly.

Warning: as numpy histogram is computed from an existing array, all values are stored in the internal data
structure during fill, which may take much memory.

Use *args and **kwargs for numpy.histogram initialization.

Default bins keyword argument is auto.

A keyword argument reset specifies the exact behaviour of request.

fill(val)
Add data to the internal storage.

request()

Compute the final histogram.

Return histogram with context.

If reset was set during the initialization, reset method is called.

reset()

Reset data and context.

Remove all data for this histogram and set current context to {}.

2.8.2 Graph

class graph(coords, field_names=('x', 'y'), scale=None)
Numeric arrays of equal size.

This structure generally corresponds to the graph of a function and represents arrays of coordinates and the
function values of arbitrary dimensions.

coords is a list of one-dimensional coordinate and value sequences (usually lists). There is little to no distinction
between them, and “values” can also be called “coordinates”.

field_names provide the meaning of these arrays. For example, a 3-dimensional graph could be distinguished
from a 2-dimensional graph with errors by its fields (“x”, “y”, “z”) versus (“x”, “y”, “error_y”). Field names
don’t affect drawing graphs: for that Variable-s should be used. Default field names, provided for the most
used 2-dimensional graphs, are “x” and “y”.

field_names can be a string separated by whitespace and/or commas or a tuple of strings, such as (“x”, “y”).
field_names must have as many elements as coords and each field name must be unique. Otherwise field names
are arbitrary. Error fields must go after all other coordinates. Name of a coordinate error is “error_” appended by

2.8. Structures 73

Lena Documentation, Release 0.6-beta

coordinate name. Further error details are appended after ‘_’. They could be arbitrary depending on the problem:
“low”, “high”, “low_90%_cl”, etc. Example: (“E”, “time”, “error_E_low”, “error_time”).

scale of the graph is a kind of its norm. It could be the integral of the function or its other property. A scale of a
normalised probability density function would be one. An initialized scale is required if one needs to renormalise
the graph in scale() (for example, to plot it with other graphs).

Coordinates of a function graph would usually be arrays of increasing values, which is not required here. Neither
is it checked that coordinates indeed contain one-dimensional numeric values. However, non-standard graphs
will likely lead to errors during plotting and will require more programmer’s work and caution, so use them only
if you understand what you are doing.

A graph can be iterated yielding tuples of numbers for each point.

Attributes

coords is a list of one-dimensional lists of coordinates.

field_names

dim is the dimension of the graph, that is of all its coordinates without errors.

In case of incorrect initialization arguments, LenaTypeError or LenaValueError is raised.

New in version 0.5.

scale(other=None)
Get or set the scale of the graph.

If other is None, return the scale of this graph.

If a numeric other is provided, rescale to that value. If the graph has unknown or zero scale, rescaling that
will raise LenaValueError.

To get meaningful results, graph’s fields are used. Only the last coordinate is rescaled. For example, if the
graph has x and y coordinates, then y will be rescaled, and for a 3-dimensional graph z will be rescaled. All
errors are rescaled together with their coordinate.

class Graph(points=None, context=None, scale=None, sort=True)
Deprecated since version 0.5: use graph . This class may be used in the future, but with a changed interface.

Function at given coordinates (arbitraty dimensions).

Graph points can be set during the initialization and during fill(). It can be rescaled (producing a new Graph).
A point is a tuple of (coordinate, value), where both coordinate and value can be tuples of numbers. Coordinate
corresponds to a point in N-dimensional space, while value is some function’s value at this point (the function
can take a value in M-dimensional space). Coordinate and value dimensions must be the same for all points.

One can get graph points as Graph.points attribute. They will be sorted each time before return if sort was set to
True. An attempt to change points (use Graph.points on the left of ‘=’) will raise Python’s AttributeError.

points is an array of (coordinate, value) tuples.

context is the same as the most recent context during fill. Use it to provide a context when initializing a Graph
from existing points.

scale sets the scale of the graph. It is used during plotting if rescaling is needed.

Graph coordinates are sorted by default. This is usually needed to plot graphs of functions. If you need to keep
the order of insertion, set sort to False.

By default, sorting is done using standard Python lists and functions. You can disable sort and provide your own
sorting container for points. Some implementations are compared here. Note that a rescaled graph uses a default
list.

74 Chapter 2. Reference

http://www.grantjenks.com/docs/sortedcontainers/performance.html

Lena Documentation, Release 0.6-beta

Note that Graph does not reduce data. All filled values will be stored in it. To reduce data, use histograms.

fill(value)
Fill the graph with value.

Value can be a (data, context) tuple. Data part must be a (coordinates, value) pair, where both coordinates
and value are also tuples. For example, value can contain the principal number and its precision.

property points

Get graph points (read only).

request()

Yield graph with context.

If sort was initialized True, graph points will be sorted.

reset()

Reset points to an empty list and current context to an empty dict.

scale(other=None)
Get or set the scale.

Graph’s scale comes from an external source. For example, if the graph was computed from a function,
this may be its integral passed via context during fill(). Once the scale is set, it is stored in the graph. If
one attempts to use scale which was not set, LenaAttributeError is raised.

If other is None, return the scale.

If a float other is provided, rescale to other. A new graph with the scale equal to other is returned, the
original one remains unchanged. Note that in this case its points will be a simple list and new graph sort
parameter will be True.

Graphs with scale equal to zero can’t be rescaled. Attempts to do that raise LenaValueError.

to_csv(separator=',', header=None)
Deprecated since version 0.5: in Lena 0.5 to_csv is not used. Iterables are converted to tables.

Convert graph’s points to CSV.

separator delimits values, the default is comma.

header, if not None, is the first string of the output (new line is added automatically).

Since a graph can be multidimensional, for each point first its coordinate is converted to string (separated
by separator), then each part of its value.

To convert Graph to CSV inside a Lena sequence, use lena.output.ToCSV .

class root_graph_errors(graph, type_code='d')
2-dimensional ROOT graph with errors.

This is an adapter for TGraphErrors and contains that graph as a field root_graph.

graph is a Lena graph .

type_code is the basic numeric type of array values (by default double). ‘f’ means floating values. See Python
module array for more options.

New in version 0.5.

class ROOTGraphErrors

Element to convert graphs to root_graph_errors.

2.8. Structures 75

https://root.cern.ch/doc/master/classTGraphErrors.html
https://docs.python.org/3/library/array.html

Lena Documentation, Release 0.6-beta

__call__(value)
Convert data part of the value (which must be a graph) to root_graph_errors.

New in version 0.5.

class HistToGraph(make_value, get_coordinate='left', field_names=('x', 'y'), scale=None)
Transform a histogram to a graph .

make_value is a Variable that creates graph value from the bin value.

get_coordinate defines the coordinate of the graph point. By default, it is the left bin edge. Other allowed values
are “right” and “middle”.

field_names set field names of resulting graphs.

scale sets scales of resulting graphs. If it is True, the scale is computed from the histogram.

See hist_to_graph() for details and examples.

Incorrect values for make_value or get_coordinate raise, respectively, LenaTypeError or LenaValueError.

run(flow)
Iterate the flow and transform histograms to graphs.

context.value is updated with make_value context. If histogram bins contained context (which is assumed
to be the same for all bins), make_value context is composed with that.

Not histograms or histograms with context.histogram.to_graph set to False pass unchanged.

2.8.3 Split into bins

Split analysis into groups defined by bins.

class IterateBins(create_edges_str=None, select_bins=None)
Iterate bins of histograms.

create_edges_str is a callable that creates a string from bin’s edges and coordinate names and adds that to the
context. It is passed parameters (edges, var_context), where var_context is variable context containing variable
names (it can be a single Variable or Combine). By default it is cell_to_string().

select_bins is a callable used to test bin contents. By default, only those histograms are iterated where bins
contain histograms. Use select_bins to choose other classes. See Selector for examples.

If create_edges_str is not callable, LenaTypeError is raised.

run(flow)
Yield histogram bins one by one.

For each histogram from the flow, if its bins pass select_bins, they are iterated.

The resulting context is taken from bin’s context. Histogram’s context is preserved in context.bins. con-
text.bin is updated with “edges” (with bin edges) and “edges_str” (their representation). If histogram’s
context contains variable, that is used for edges’ representation.

Not histograms pass unchanged.

class MapBins(seq, select_bins=<function MapBins.<lambda>>, get_example_bin=<function
get_example_bin>, drop_bins_context=True)

Transform bin content of histograms.

This class can be used when histogram bins contain complex structures. For example, in order to plot a histogram
with a 3-dimensional vector in each bin, one can create 3 histograms corresponding to the vector’s components.

76 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

seq is a sequence or an element applied to bin contents. If seq is not a Sequence or an element with run method,
it is converted to a Sequence. Example: seq=Split([X(), Y(), Z()]) (provided that you have X, Y, Z
variables).

If select_bins applied to histogram bins is True (tested on an arbitrary bin), the histogram is transformed. Bin
types can be given in a list or as a general Selector. For example, select_bins=[lena.math.vector3,
list] selects histograms where bins are vectors or lists. By default all histograms are accepted.

The “arbitrary bin” is returned by a callable get_example_bin (by default get_example_bin()).

MapBins creates histograms that may be plotted, because their bins contain only data without context. If
drop_bins_context is False, context remains in bins. By default, context of all histogram bins is discarded.
This discourages compositions of MapBins: make compositions of their internal sequences instead.

In case of incorrect arguments, LenaTypeError is raised.

run(flow)
Transform histograms from flow.

context.value is updated with bin context (if that exists). It is assumed that all bins have the same context
(because they were produced by the same sequence), therefore an arbitrary bin is taken and contexts of all
other bins are ignored.

Not selected values pass unchanged.

class SplitIntoBins(seq, arg_var, edges)
Split analysis into groups defined by bins.

seq is a FillComputeSeq sequence (or will be converted to that) that corresponds to the analysis being performed
for different bins. Deep copy of seq is done for each bin.

arg_var is a Variable that takes data and returns value used to compute the bin index. Example of a
two-dimensional function: arg_var = lena.variables.Variable("xy", lambda event: (event.x,
event.y)).

edges is a sequence of arrays containing monotonically increasing bin edges along each dimension. Example:
edges = lena.math.mesh((0, 1), 10).

Note: The final histogram may contain vectors, histograms and any other data the analysis produced. To plot
them, one can extract vector components with e.g. MapBins. If bin contents are histograms, they can be yielded
one by one with IterateBins.

Attributes: bins, edges.

If edges are not increasing, LenaValueError is raised. In case of other argument initialization problems,
LenaTypeError is raised.

compute()

Yield a (histogram, context) pair for each compute() for all bins.

The histogram is created from edges with bin contents taken from compute() for bins. Computational
context is preserved in histogram’s bins.

SplitIntoBins adds context as a subcontext variable (corresponding to arg_var). This allows unification
of SplitIntoBins with common analysis using variables (useful when creating plots from one template).
Existing context values are preserved.

2.8. Structures 77

Lena Documentation, Release 0.6-beta

Note: In Python 3 the minimum number of compute() among all bins is used. In Python 2, if some bin is
exhausted before the others, its content will be filled with None.

fill(val)
Fill the cell corresponding to arg_var(val) with val.

Values outside the edges are ignored.

2.8.4 Histogram functions

Functions for histograms.

These functions are used for low-level work with histograms and their contents. They are not needed for normal usage.

class HistCell(edges, bin, index)
A namedtuple with fields edges, bin, index.

Create new instance of HistCell(edges, bin, index)

cell_to_string(cell_edges, var_context=None, coord_names=None, coord_fmt='{}_lte_{}_lt_{}', coord_join='_',
reverse=False)

Transform cell edges into a string.

cell_edges is a tuple of pairs (lower bound, upper bound) for each coordinate.

coord_names is a list of coordinates names.

coord_fmt is a string, which defines how to format individual coordinates.

coord_join is a string, which joins coordinate pairs.

If reverse is True, coordinates are joined in reverse order.

check_edges_increasing(edges)
Assure that multidimensional edges are increasing.

If length of edges or its subarray is less than 2 or if some subarray of edges contains not strictly increasing values,
LenaValueError is raised.

get_bin_edges(index, edges)
Return edges of the bin for the given edges of a histogram.

In one-dimensional case index must be an integer and a tuple of (x_low_edge, x_high_edge) for that bin is re-
turned.

In a multidimensional case index is a container of numeric indices in each dimension. A list of bin edges in each
dimension is returned.

get_bin_on_index(index, bins)
Return bin corresponding to multidimensional index.

index can be a number or a list/tuple. If index length is less than dimension of bins, a subarray of bins is returned.

In case of an index error, LenaIndexError is raised.

Example:

78 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

>>> from lena.structures import histogram, get_bin_on_index
>>> hist = histogram([0, 1], [0])
>>> get_bin_on_index(0, hist.bins)
0
>>> get_bin_on_index((0, 1), [[0, 1], [0, 0]])
1
>>> get_bin_on_index(0, [[0, 1], [0, 0]])
[0, 1]

get_bin_on_value(arg, edges)
Get the bin index for arg in a multidimensional array edges.

arg is a 1-dimensional array of numbers (or a number for 1-dimensional edges), and corresponds to a point in
N-dimensional space.

edges is an array of N-1 dimensional arrays (lists or tuples) of numbers. Each 1-dimensional subarray consists
of increasing numbers.

arg and edges must have the same length (otherwise LenaValueError is raised). arg and edges must be iterable
and support len().

Return list of indices in edges corresponding to arg.

If any coordinate is out of its corresponding edge range, its index will be -1 for underflow or len(edge)-1 for
overflow.

Examples:

>>> from lena.structures import get_bin_on_value
>>> edges = [[1, 2, 3], [1, 3.5]]
>>> get_bin_on_value((1.5, 2), edges)
[0, 0]
>>> get_bin_on_value((1.5, 0), edges)
[0, -1]
>>> # the upper edge is excluded
>>> get_bin_on_value((3, 2), edges)
[2, 0]
>>> # one-dimensional edges
>>> edges = [1, 2, 3]
>>> get_bin_on_value(2, edges)
[1]

get_bin_on_value_1d(val, arr)
Return index for value in one-dimensional array.

arr must contain strictly increasing values (not necessarily equidistant), it is not checked.

“Linear binary search” is used, that is our array search by default assumes the array to be split on equidistant
steps.

Example:

>>> from lena.structures import get_bin_on_value_1d
>>> arr = [0, 1, 4, 5, 7, 10]
>>> get_bin_on_value_1d(0, arr)
0
>>> get_bin_on_value_1d(4.5, arr)

(continues on next page)

2.8. Structures 79

Lena Documentation, Release 0.6-beta

(continued from previous page)

2
>>> # upper range is excluded
>>> get_bin_on_value_1d(10, arr)
5
>>> # underflow
>>> get_bin_on_value_1d(-10, arr)
-1

get_example_bin(struct)
Return bin with zero index on each axis of the histogram bins.

For example, if the histogram is two-dimensional, return hist[0][0].

struct can be a histogram or an array of bins.

hist_to_graph(hist, make_value=None, get_coordinate='left', field_names=('x', 'y'), scale=None)
Convert a histogram to a graph .

make_value is a function to set the value of a graph’s point. By default it is bin content. make_value accepts a
single value (bin content) without context.

This option could be used to create graph’s error bars. For example, to create a graph with errors from a histogram
where bins contain a named tuple with fields mean, mean_error and a context one could use

>>> make_value = lambda bin_: (bin_.mean, bin_.mean_error)

get_coordinate defines what the coordinate of a graph point created from a histogram bin will be. It can be “left”
(default), “right” and “middle”.

field_names set field names of the graph. Their number must be the same as the dimension of the result. For a
make_value above they would be (“x”, “y_mean”, “y_mean_error”).

scale becomes the graph’s scale (unknown by default). If it is True, it uses the histogram scale.

hist must contain only numeric bins (without context) or make_value must remove context when creating a
numeric graph.

Return the resulting graph.

init_bins(edges, value=0, deepcopy=False)
Initialize cells of the form edges with the given value.

Return bins filled with copies of value.

Value must be copyable, usual numbers will suit. If the value is mutable, use deepcopy = True (or the content
of cells will be identical).

Examples:

>>> edges = [[0, 1], [0, 1]]
>>> # one cell
>>> init_bins(edges)
[[0]]
>>> # no need to use floats,
>>> # because integers will automatically be cast to floats
>>> # when used together
>>> init_bins(edges, 0.0)
[[0.0]]

(continues on next page)

80 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

(continued from previous page)

>>> init_bins([[0, 1, 2], [0, 1, 2]])
[[0, 0], [0, 0]]
>>> init_bins([0, 1, 2])
[0, 0]

integral(bins, edges)
Compute integral (scale for a histogram).

bins contain values, and edges form the mesh for the integration. Their format is defined in histogram descrip-
tion.

iter_bins(bins)
Iterate on bins. Yield (index, bin content).

Edges with higher index are iterated first (that is z, then y, then x for a 3-dimensional histogram).

iter_bins_with_edges(bins, edges)
Generate (bin content, bin edges) pairs.

Bin edges is a tuple, such that its item at index i is (lower bound, upper bound) of the bin at i-th coordinate.

Examples:

>>> from lena.math import mesh
>>> list(iter_bins_with_edges([0, 1, 2], edges=mesh((0, 3), 3)))
[(0, ((0, 1.0),)), (1, ((1.0, 2.0),)), (2, ((2.0, 3),))]
>>>
>>> # 2-dimensional histogram
>>> list(iter_bins_with_edges(
... bins=[[2]], edges=mesh(((0, 1), (0, 1)), (1, 1))
...))
[(2, ((0, 1), (0, 1)))]

New in version 0.5: made public.

iter_cells(hist, ranges=None, coord_ranges=None)
Iterate cells of a histogram hist, possibly in a subrange.

For each bin, yield a HistCell containing bin edges, bin content and bin index. The order of iteration is the
same as for iter_bins().

ranges are the ranges of bin indices to be used for each coordinate (the lower value is included, the upper value
is excluded).

coord_ranges set real coordinate ranges based on histogram edges. Obviously, they can be not exactly bin edges.
If one of the ranges for the given coordinate is outside the histogram edges, then only existing histogram edges
within the range are selected. If the coordinate range is completely outside histogram edges, nothing is yielded.
If a lower or upper coord_range falls within a bin, this bin is yielded. Note that if a coordinate range falls on a
bin edge, the number of generated bins can be unstable because of limited float precision.

ranges and coord_ranges are tuples of tuples of limits in corresponding dimensions. For one-dimensional his-
togram it must be a tuple containing a tuple, for example ((None, None),).

None as an upper or lower range means no limit (((None, None),) is equivalent to ((0, len(bins)),) for a 1-
dimensional histogram).

If a range index is lower than 0 or higher than possible index, LenaValueError is raised. If both coord_ranges
and ranges are provided, LenaTypeError is raised.

2.8. Structures 81

Lena Documentation, Release 0.6-beta

make_hist_context(hist, context)
Update a deep copy of context with the context of a histogram hist.

Deprecated since version 0.5: histogram context is updated automatically during conversion in ToCSV . Use
histogram._update_context explicitly if needed.

unify_1_md(bins, edges)
Unify 1- and multidimensional bins and edges.

Return a tuple of (bins, edges). Bins and multidimensional edges return unchanged, while one-dimensional edges
are inserted into a list.

2.9 Variables

Variables:

Combine(*args, **kwargs) Combine variables into a tuple.
Compose(*args, **kwargs) Composition of variables.
Variable(name, getter[, type]) Function of data with context.

2.9.1 Variables

Variables are functions to transform data adding context.

A variable can represent a particle type, a coordinate, etc. They transform raw input data into Lena data with context.
Variables have name and may have other attributes like LaTeX name, dimension or unit.

Variables can be composed using Compose, which corresponds to function composition.

Variables can be combined into multidimensional variables using Combine.

Examples:

>>> from lena.variables import Variable, Compose
>>> # data is pairs of (positron, neutron) coordinates
>>> data = [((1.05, 0.98, 0.8), (1.1, 1.1, 1.3))]
>>> x = Variable(
... "x", lambda coord: coord[0], type="coordinate"
...)
>>> positron = Variable(
... "positron", latex_name="e^+",
... getter=lambda double_ev: double_ev[0], type="particle"
...)
>>> x_e = Compose(positron, x)
>>> x_e(data[0])[0]
1.05
>>> x_e(data[0])[1] == {
... 'variable': {
... 'name': 'x',
... 'coordinate': {'name': 'x'},
... 'type': 'coordinate',
... 'compose': ['particle', 'coordinate'],
... 'particle': {'name': 'positron', 'latex_name': 'e^+'}

(continues on next page)

82 Chapter 2. Reference

Lena Documentation, Release 0.6-beta

(continued from previous page)

... }

... }
True

Combine and Compose are subclasses of a Variable.

class Combine(*args, **kwargs)
Combine variables into a tuple.

Combine(var1, var2, . . .)(value) is ((var1.getter(value), var2.getter(value), . . .), context).

args are the variables to be combined.

Keyword arguments are passed to Variable’s __init__. For example, name is the name of the combined variable.
If not provided, it is its variables’ names joined with ‘_’.

context.variable is updated with combine, which is a tuple containing each variable’s context.

Attributes:

dim is the number of variables.

All args must be Variables and there must be at least one of them, otherwise LenaTypeError is raised.

__getitem__(index)
Get variable at the given index.

class Compose(*args, **kwargs)
Composition of variables.

args are the variables to be composed.

A keyword argument name can set the name of the composed variable. If that is missing, it the name of the last
variable is used.

context.variable.compose contains contexts of the composed variables (the first composed variable is most
nested).

If there are no variables or if kwargs contains getter, LenaTypeError is raised.

class Variable(name, getter, type='', **kwargs)
Function of data with context.

name is variable’s name.

getter is a Python function (not a Variable) that performs the actual transformation of data. It must accept data
and return data without context.

Other variable’s attributes can be passed as keyword arguments. Examples include latex_name, unit (like cm or
keV), range, etc.

type is the type of the variable. It depends on your application, examples could be “coordinate” or “particle”. It
has a special meaning: if present, its value is added to variable’s context as a key with the context of this variable
(see the example for this module). It is recommended to set the type, otherwise variable’s data will be lost after
composition of variables.

Attributes

getter

var_context is the dictionary of attributes of the variable. It is added to context.variable during __call__().

2.9. Variables 83

Lena Documentation, Release 0.6-beta

All public attributes of a variable can be accessed using dot notation (for example,
var.var_context[“latex_name”] can be written as var.latex_name). AttributeError is raised if an at-
tribute is missing.

If getter is a Variable or is not callable, LenaTypeError is raised.

__call__(value)
Transform a value.

Data part of the value is transformed by getter.

context.variable is updated with the context of this variable (or created if missing). If context already
contained variable, it is preserved as context.variable.compose subcontext.

84 Chapter 2. Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

85

Lena Documentation, Release 0.6-beta

86 Chapter 3. Indices and tables

CHAPTER

FOUR

INSTALLATION

4.1 Minimal

Install the latest official version from PyPI:

pip install lena

Lena core modules have no dependencies except Python standard libraries.

4.2 Recommended

pip install lena jinja2

jinja2 is used to create templates for plots. Also install the following programs:

• pdflatex to produce pdf files from LaTeX,

• pgfplots and TikZ to produce LaTeX plots,

• pdftoppm to convert pdf files to png.

These programs can be found in your OS packages. For example, in Fedora Core 29 install them with

dnf install texlive-latex texlive-pgfplots poppler-utils

pdflatex and pgfplots are contained in the standard TeX Live distribution.

4.3 Full

This installation is needed only if you want to extend and develop Lena. Download the full repository (with history)
from GitHub and install all development dependencies:

git clone https://github.com/ynikitenko/lena
pip install -r lena/requirements.txt

Install command line programs from the previous subsection and adjust PYTHONPATH as shown in the next subsec-
tion.

87

https://www.ctan.org/pkg/texlive

Lena Documentation, Release 0.6-beta

4.4 GitHub or PyPI

PyPI contains the last official release, which was tested for more Python versions. GitHub contains the most recent
development code for experienced users. Usually it is well tested too, but there is a chance that a newly introduced
interface will be changed.

For most users pip install should be easier. If for some reasons you can’t do that, you can get an archive of an official
release from GitHub releases.

pip installs the framework into a system directory, while to install with git you need to adjust the PYTHONPATH. Add
to your profile (e.g. .profile or .bashrc on Linux)

export PYTHONPATH=$PYTHONPATH:<path-to-lena>

and replace <path-to-lena> with the actual path to the cloned repository.

88 Chapter 4. Installation

https://github.com/ynikitenko/lena/releases

CHAPTER

FIVE

DOCUMENTATION

To get started, read the Tutorial.

Complete documentation for Lena modules can be found in the Reference.

See Release Notes for changes.

89

https://github.com/ynikitenko/lena/blob/master/TIDINGS.rst

Lena Documentation, Release 0.6-beta

90 Chapter 5. Documentation

CHAPTER

SIX

LICENSE

Lena is free software released under Apache software license (version 2). You can use it freely for your data analysis,
read its source code and modify it.

It is intended to help people in data analysis, but we don’t take responsibility if something goes wrong.

91

https://github.com/ynikitenko/lena/blob/master/LICENSE

Lena Documentation, Release 0.6-beta

92 Chapter 6. License

CHAPTER

SEVEN

ALTERNATIVES

Ruffus is a Computation Pipeline library for Python used in science and bioinformatics. It connects program compo-
nents by writing and reading files.

93

http://www.ruffus.org.uk/index.html

Lena Documentation, Release 0.6-beta

94 Chapter 7. Alternatives

PYTHON MODULE INDEX

l
lena.core, 36
lena.core.adapters, 38
lena.core.exceptions, 41
lena.flow, 43
lena.flow.functions, 47
lena.flow.group_plots, 48
lena.flow.iterators, 52
lena.math.elements, 57
lena.math.meshes, 55
lena.math.utils, 57
lena.math.vector3, 59
lena.structures, 72
lena.structures.elements, 76
lena.structures.graph, 73
lena.structures.hist_functions, 78
lena.structures.histogram, 70
lena.structures.root_graphs, 75
lena.structures.split_into_bins, 76
lena.variables.variable, 82

95

Lena Documentation, Release 0.6-beta

96 Python Module Index

INDEX

Symbols
__call__() (And method), 51
__call__() (Call method), 39
__call__() (Chain method), 52
__call__() (Context method), 30
__call__() (CountFrom method), 52
__call__() (GroupScale method), 50
__call__() (MakeFilename method), 64
__call__() (Not method), 52
__call__() (Or method), 51
__call__() (Print method), 46
__call__() (ROOTGraphErrors method), 75
__call__() (Selector method), 51
__call__() (Source method), 36
__call__() (SourceEl method), 41
__call__() (Split method), 38
__call__() (UpdateContext method), 31
__call__() (Variable method), 84
__eq__() (histogram method), 71
__getitem__() (Combine method), 83

A
add() (histogram method), 71
alter_sequence() (Cache static method), 44
And (class in lena.flow), 51
angle() (vector3 method), 61

C
Cache (class in lena.flow), 43
cache_exists() (Cache method), 44
Call (class in lena.core.adapters), 38
cell_to_string() (in module

lena.structures.hist_functions), 78
Chain (class in lena.flow.iterators), 52
check_edges_increasing() (in module

lena.structures.hist_functions), 78
clear() (GroupBy method), 49
clip() (in module lena.math.utils), 57
Combine (class in lena.variables.variable), 83
Compose (class in lena.variables.variable), 83
compute() (Count method), 45
compute() (DSum method), 57

compute() (FillCompute method), 39
compute() (FillComputeSeq method), 37
compute() (GroupBy method), 49
compute() (Histogram method), 72
compute() (Mean method), 58
compute() (SplitIntoBins method), 77
compute() (Sum method), 58
compute() (Vectorize method), 59
contains() (in module lena.context.functions), 31
Context (class in lena.context), 29
cosine() (vector3 method), 61
Count (class in lena.flow), 44
CountFrom (class in lena.flow.iterators), 52
cross() (vector3 method), 61

D
difference() (in module lena.context.functions), 31
dot() (vector3 method), 61
drop_cache() (Cache method), 44
DropContext (class in lena.flow), 45
DSum (class in lena.math.elements), 57

E
End (class in lena.flow), 45

F
fill() (Count method), 45
fill() (DSum method), 58
fill() (FillCompute method), 39
fill() (FillComputeSeq method), 37
fill() (FillRequest method), 40
fill() (FillRequestSeq method), 37
fill() (Graph method), 75
fill() (GroupBy method), 49
fill() (Histogram method), 72
fill() (histogram method), 71
fill() (Mean method), 58
fill() (NumpyHistogram method), 73
fill() (SplitIntoBins method), 78
fill() (Sum method), 58
fill() (Vectorize method), 59
fill_into() (Count method), 45

97

Lena Documentation, Release 0.6-beta

fill_into() (FillInto method), 39
fill_into() (Filter method), 46
fill_into() (Slice method), 53
FillCompute (class in lena.core.adapters), 39
FillComputeSeq (class in lena.core), 36
FillInto (class in lena.core.adapters), 39
FillRequest (class in lena.core.adapters), 39
FillRequestSeq (class in lena.core), 37
Filter (class in lena.flow), 45
flatten() (in module lena.math.meshes), 55
format_context() (in module lena.context.functions),

32
from_spherical() (vector3 class method), 61

G
get_bin_edges() (in module

lena.structures.hist_functions), 78
get_bin_on_index() (in module

lena.structures.hist_functions), 78
get_bin_on_value() (in module

lena.structures.hist_functions), 79
get_bin_on_value_1d() (in module

lena.structures.hist_functions), 79
get_context() (in module lena.flow.functions), 47
get_data() (in module lena.flow.functions), 47
get_data_context() (in module lena.flow.functions),

47
get_example_bin() (in module

lena.structures.hist_functions), 80
get_nevents() (histogram method), 72
get_recursively() (in module lena.context.functions),

32
Graph (class in lena.structures.graph), 74
graph (class in lena.structures.graph), 73
group_plots() (in module lena.flow), 50
GroupBy (class in lena.flow), 49
GroupPlots (class in lena.flow), 49
GroupScale (class in lena.flow), 50

H
hist1d_to_csv() (in module lena.output), 66
hist2d_to_csv() (in module lena.output), 67
hist_to_graph() (in module

lena.structures.hist_functions), 80
HistCell (class in lena.structures.hist_functions), 78
Histogram (class in lena.structures.histogram), 72
histogram (class in lena.structures.histogram), 70
HistToGraph (class in lena.structures.elements), 76

I
init_bins() (in module lena.structures.hist_functions),

80
integral() (in module lena.structures.hist_functions),

81

intersection() (in module lena.context.functions), 32
isclose() (in module lena.math.utils), 57
isclose() (vector3 method), 62
ISlice() (in module lena.flow.iterators), 52
iter_bins() (in module lena.structures.hist_functions),

81
iter_bins_with_edges() (in module

lena.structures.hist_functions), 81
iter_cells() (in module

lena.structures.hist_functions), 81
iterable_to_table() (in module lena.output), 65
IterateBins (class in lena.structures.split_into_bins),

76

L
LaTeXToPDF (class in lena.output), 68
lena.core

module, 36
lena.core.adapters

module, 38
lena.core.exceptions

module, 41
lena.flow

module, 43
lena.flow.functions

module, 47
lena.flow.group_plots

module, 48
lena.flow.iterators

module, 52
lena.math.elements

module, 57
lena.math.meshes

module, 55
lena.math.utils

module, 57
lena.math.vector3

module, 59
lena.structures

module, 72
lena.structures.elements

module, 76
lena.structures.graph

module, 73
lena.structures.hist_functions

module, 78
lena.structures.histogram

module, 70
lena.structures.root_graphs

module, 75
lena.structures.split_into_bins

module, 76
lena.variables.variable

module, 82

98 Index

Lena Documentation, Release 0.6-beta

LenaAttributeError, 41
LenaEnvironmentError, 41
LenaException, 41
LenaIndexError, 41
LenaKeyError, 41
LenaNotImplementedError, 42
LenaRuntimeError, 42
LenaStopFill, 42
LenaTypeError, 42
LenaValueError, 42
LenaZeroDivisionError, 42

M
make_hist_context() (in module

lena.structures.hist_functions), 81
MakeFilename (class in lena.output), 64
MapBins (class in lena.structures.split_into_bins), 76
MapGroup (class in lena.flow), 50
md_map() (in module lena.math.meshes), 56
Mean (class in lena.math.elements), 58
mesh() (in module lena.math.meshes), 55
module

lena.core, 36
lena.core.adapters, 38
lena.core.exceptions, 41
lena.flow, 43
lena.flow.functions, 47
lena.flow.group_plots, 48
lena.flow.iterators, 52
lena.math.elements, 57
lena.math.meshes, 55
lena.math.utils, 57
lena.math.vector3, 59
lena.structures, 72
lena.structures.elements, 76
lena.structures.graph, 73
lena.structures.hist_functions, 78
lena.structures.histogram, 70
lena.structures.root_graphs, 75
lena.structures.split_into_bins, 76
lena.variables.variable, 82

N
norm() (vector3 method), 62
Not (class in lena.flow), 52
NumpyHistogram (class in lena.structures), 72

O
Or (class in lena.flow), 51

P
PDFToPNG (class in lena.output), 65
points (Graph property), 75

Print (class in lena.flow), 46
Progress (class in lena.flow), 46
proj() (vector3 method), 62

R
ReadROOTFile (class in lena.input), 54
ReadROOTTree (class in lena.input), 54
refine_mesh() (in module lena.math.meshes), 56
RenderLaTeX (class in lena.output), 68
request() (FillRequest method), 40
request() (FillRequestSeq method), 37
request() (Graph method), 75
request() (NumpyHistogram method), 73
reset() (Count method), 45
reset() (DSum method), 58
reset() (FillRequest method), 40
reset() (FillRequestSeq method), 37
reset() (Graph method), 75
reset() (GroupBy method), 49
reset() (Histogram method), 72
reset() (Mean method), 58
reset() (NumpyHistogram method), 73
reset() (Sum method), 59
Reverse (class in lena.flow.iterators), 52
root_graph_errors (class in

lena.structures.root_graphs), 75
ROOTGraphErrors (class in

lena.structures.root_graphs), 75
rotate() (vector3 method), 62
Run (class in lena.core.adapters), 40
run() (Cache method), 44
run() (Count method), 45
run() (DropContext method), 45
run() (End method), 45
run() (FillRequest method), 40
run() (Filter method), 46
run() (GroupPlots method), 50
run() (HistToGraph method), 76
run() (IterateBins method), 76
run() (LaTeXToPDF method), 68
run() (MapBins method), 77
run() (MapGroup method), 50
run() (PDFToPNG method), 65
run() (Progress method), 46
run() (ReadROOTFile method), 54
run() (ReadROOTTree method), 54
run() (RenderLaTeX method), 69
run() (Reverse method), 52
run() (Run method), 41
run() (RunIf method), 47
run() (Sequence method), 36
run() (Slice method), 53
run() (Split method), 38
run() (ToCSV method), 66

Index 99

Lena Documentation, Release 0.6-beta

run() (Write method), 67
RunIf (class in lena.flow), 46

S
scalar_proj() (vector3 method), 62
scale() (Graph method), 75
scale() (graph method), 74
scale() (histogram method), 72
Selector (class in lena.flow), 51
seq_map() (in module lena.flow.functions), 48
Sequence (class in lena.core), 36
set_nevents() (histogram method), 72
SetContext (class in lena.meta), 63
Slice (class in lena.flow.iterators), 53
Source (class in lena.core), 36
SourceEl (class in lena.core.adapters), 41
Split (class in lena.core), 37
SplitIntoBins (class in

lena.structures.split_into_bins), 77
StoreContext (class in lena.meta), 63
str_to_dict() (in module lena.context.functions), 33
str_to_list() (in module lena.context.functions), 33
Sum (class in lena.math.elements), 58

T
to_csv() (Graph method), 75
to_string() (in module lena.context.functions), 33
ToCSV (class in lena.output), 66

U
unify_1_md() (in module

lena.structures.hist_functions), 82
update() (GroupBy method), 49
update_nested() (in module lena.context.functions), 34
update_recursively() (in module

lena.context.functions), 34
UpdateContext (class in lena.context), 30
UpdateContextFromStatic (class in lena.meta), 63

V
Variable (class in lena.variables.variable), 83
vector3 (class in lena.math.vector3), 60
Vectorize (class in lena.math.elements), 59

W
Write (class in lena.output), 67
Writer (class in lena.output), 67

100 Index

	Tutorial
	Introduction to Lena
	The three ideas behind Lena
	1. Sequences and elements
	2. Lazy evaluation
	3. Context

	A real analysis example
	Elements for development

	Split
	Introduction
	Variables
	Combine
	Compose

	Analysis example
	Adapters, elements and sequences
	Split
	Context. Performance and safety

	Answers to exercises
	Part 1
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5

	Part 2
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5

	Reference
	Context
	Elements
	Functions

	Core
	Sequences
	Adapters
	Exceptions

	Flow
	Elements
	Functions
	Group plots
	Iterators

	Input
	ROOT readers

	Math
	Functions of multidimensional arguments
	Functions of scalar and multidimensional arguments
	Elements
	3-dimensional vector

	Meta
	Elements

	Output
	Output
	LaTeX

	Structures
	Histograms
	Graph
	Split into bins
	Histogram functions

	Variables
	Variables

	Indices and tables
	Installation
	Minimal
	Recommended
	Full
	GitHub or PyPI

	Documentation
	License
	Alternatives
	Python Module Index
	Index

